
JPRS-UCC-85-002

4 March 1985

USSR Report

CYBERNETICS, COMPUTERS AND
AUTOMATION TECHNOLOGY

äDIBYKIMJTIOM STA;

%pr
Jiiata.««e«> 19980729 114

DTIC QUALITY mm^JIED 5

FBIS FOREIGN BROADCAST INFORMATION SERVICE

"NATIONAL TECHNICAL
INFORMATION SERVICE
INr^S DEPARTMENT OF COMMERCE

SPRINGFIELD, VA. 22161

a A

NOTE

JPRS publications contain information primarily from foreign newspapers,
periodicals and books, but also from news agency transmissions and broad-
casts. Materials from foreign-language sources are translated; those
from English-language sources are transcribed or reprinted, with the
original phrasing and other characteristics retained.

headlines, editorial reports, and material enclosed in brackets [] are
supplied by JPRS. Processing indicators such as [Text] or [Excerpt] in
the first line of each item, or following the last line of a brief,
indicate how the original information was processed. Where no processing
Indicator is given, the information was summarized or extracted»

Unfamiliar names rendered phonetically or transliterated are enclosed in
parentheses. Words or names preceded by a question mark and enclosed in
parentheses were not clear in the original but have been supplied as
appropriate in context. Other unattributed parenthetical notes within the
body of an item originate with the source. Times within items are as
given by source.

The contents of this publication in no way represent the policies, views
or attitudes of the U„ S, Government,,

PROCUREMENT OF PUBLICATIONS

JPRS publications may be .ordered from the National Technical Information
Service (NTIS), Springfield, Virginia 22161» In ordering, it is recom-
mended that the JPRS number, title, date and author, if applicable, of
publication be cited.

Current JPRS publications are announced in Government Reports Announcements
issued semimonthly by the NTIS, and are listed in the Monthly Catalog of
U.S. Government Publications issued by the Superintendent of Documents, U.S.
Government'Printing Office, Washington, D.C 20402.

Correspondence pertaining to matters other than procurement may be addressed
to Joint Publications Research Service, 1000 North Glebe Road, Arlington,
Virginia 22201.

Soviet books and journal articles displaying a copyright
notice are reproduced and sold by NTIS with permission of
the copyright agency of the Soviet Union. Permission for
further reproduction must be obtained from copyright owner.

NOTICE

A new serial entitled WORLDWIDE REPORT: ARMS CONTROL will

be published starting in March 1985.

The new report will contain Soviet, European, and other foreign

media reportage and commentary on arms control issues, negotiations,

agreements, and treaties. Much of the material will be reprinted

from the regional FBIS DAILY REPORTS.

U.S. Government consumers may arrange to receive the new report

through regular publications distribution channels or by

contacting:

FBIS/Liaison and Requirements
P.O. Box 2604
Washington, D.C. 20013

Other consumers may order the report by contacting:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

JPRS-UCC-85-002

4 March 1985

USSR REPORT

CYBERNETICS, COMPUTERS AND AUTOMATION TECHNOLOGY

CONTENTS

GENERAL

Computers and Knowledges-Processing
(Ye, D 'yakovaj KOMSOMOL *SKAYA PRAVDA, 6 Nov 84) 1

The Problem of Creating a Standardized Series of Personal
Computers

(V. S, Mikhalevieh, B, N. Malinovskiyj
UPRAVLYAYUSHCHIYE SISTEMY 1 MASHINY, No 5, Sep^Oct 84)... 3

Microcomputer Repair Service Excoriated
(Ye. Zamura; SOVETSKAYA M0LDAV1YA, 5 Oct 84) , ., 12

HARDWARE

Use of Function Processors in Multiprocessor Systems
(A. V. Anisimov, A, V. Kraynikov, et al.j IZVESTIYA
VYSSHXKH UCHEBNYKH ZAVEDENIY! PRIBOR0STR0YENIYE,
No 5, May 84) ' 15

Bipolar Nonswitching Logic Arrays—Universal Components of
Function Expanders for Computation of Elementary Functions

(V. D. Baykov, A. 1, Krys'5 IZVESTIYA VYSSHTKH
UCHEBNYKH ZAVEDENIY: PR1B0R0STR0YENIYE, No 5, May 84)... 19

Execution of Cellular Logic Operations in Spatially
Continuous, Bit Slice Processor

(V, M. Denisov, Yu. N. Matveyev, et al.; IZVESTIYA
VYSSHIKH UCHEBNYKH ZAVEDENIY; PR1B0R0STR0YENIYE,
No 5, May 84) ■ 26

Organization of Conveyor Processing of Vector Commands in
Multiprocessor Computer Systems With a Reorganizable
Structure

(A. A. Zabolotnyy, V, M. Kostelyanskiy, et al.;
UPRAVLYAYUSHCHIYE SISTEMY I MASHINY, No 5, Sep-Oct 84)... 32

- a - [III - USSR - 21C S&Tl

Systems Design and Application of Computers With Flexible
Architecture

(A, V. Palagln, A. F. Kurgayev, et al.;
UPRAVLYAYUSHCHIYE SISTEMY I MASHINY, Mo 5, Sep~Oct 84),,. 43

Problems in Organization of Dynamic Microprogramming
CV. G. Vasendo; UPRAVLYAYUSHCHIYE SISTEMY I MASH1NY
No 5, SepT-Oct 84) ' 57

SOFTWARE

Streamlining the Russian Software Industry
(V, Kipayev; IZVESTIYA, 17 Oct 84), , 59

GRAFIT Language for Simulating Two-Dimensional Geometric
Entities and Sketches

(V, G, Sirotin; TJPRÄVLYAYUSHCHIYE SISTEMY I MASHINY,
No 5, Sep^Oct 84),, 62

Automation of Development of Software for Switching Units
That Are Implemented in the Form of Multiprocessor Systems
on a Microcomputer Base

CG. R. Ovchlnnikov, Yu, D. Yurakoy, et al,5
TJPRÄVLYAYUSHCHIYE SISTEMY I MASHINY, No 5, Sep^Oct 84),.. 68

Realization of FORTRAN in Intelligent Terminal
(D, A. Ostroukhov, P. Ya. Gullnskiy;
UPRAVLYAYUSHCHIYE SISTEMY 1 MASHINY, No 5, Sepr-Oct 84).,. 78

Decomposition of Requirements in 'DESIT' Language
CYu. A. Basin; UPRAVLYAYUSHCHIYE SISTEMY I MASHINY,
No 5, Sep-Oet 84) , 78

APPLICATIONS

Computer-Aided Instruction System on an ARM/"NAIRI-4"
Computer Base

(A, 0. Vardanyan, B. V. Pyrinov; UPRAVLYAYUSHCHIYE
SISTEMY I MASHINY, No 5, Sep-Oct 84) , 80

- b

iJPUS~UCC-85-002
4 March 1985

GENERAL

COMPUTERS AND KNOWLEDGE-PROCESSING

Moscow KOMSOMOL'SKAYA PRAVDA in Russian 6 Nov 84 p 2

[Article by Ye. D'yakovaj "Let's Make the Computer an Advisor: The Work
of Young Moscow Scientists is Awarded the Prize of the Lenin Komsomol"]

[Text] Remember those excited discussions caused by the first computers?
I don't mean the discussions of professionals, but those in the newspapers,
during debates, even at high school gatherings. People of all kinds were
hotly disputing whether a machine could surpass the human mind. And they would
try to show that, despite enormous memory and speed, cybernetics could only
handle a limited domain of problems, outside what we call spirituality,

Generally, this was correct. In the past decade the machines have learned
to compose music and "paint" the Mona Lisa but, soberly viewed, the range of
their problems has remained the same. The computer can "compute" only those
processes, about which we know everything, and for which we can construct
an exact mathematical model. Unfortunately, such processes in nature are few.

We know very little about the mechanism of the vital phenomena in, say, the
human organism, That is why doctors, biologists, geologists and practioners
of dozens of "loosely-organized", "non-mathematical", but extremely important
fields of knowledge must rely exclusively on their own professional experience,
books describing the experience of their predecessors, and experimental data.

Quite a lot, it would seem. But not really.

Thus, for example in the construction of petroleum storage tanks we use
tables of coefficients of the metal strength. The table is experimentally
obtained; filling in a single square requires the building of a model of
the tank and then destroying it. Each new value of the coefficient costs
several thousand rubles.

It would appear more easy to compute the coefficients, But, besides our
well-known laws of physics and strength of materials, each time dozens or
hundreds of factors "interfere" in the matter, which cannot be calculated
in the usual way.

But isn't it possible, without going into the actual physics of a particular
factor, to simply take account of its effects? It may be so. This is the
subject of a special field of cybernetics—the theory of pattern recognition.

For example the computer memory stores detailed descriptions of 200-300 oil
wells, each described by dozens of indicators. Using these data, if we know
the outlook for 300 wells the computer can reliably predict whether the
three hundred and first will be profitable. This method combines the
enormous memory and speed of the computer with something that has always
been a human attribute—"knowledge of life." But any prediction involves
risk, A doctor risks a mistake in diagnosis, experts may err in deciding how
to drill a well. How can this risk be minimized in computer predictions?

This question has been answered the best by young Moscow scientists working
at the Computer Center of the USSR Academy of Sciences, Igor' Isayev,
Dmitriy Kochetkov, and Konstantin Rudakov, All three first heard of the
theory of pattern recognition of forms as third-year students beginning their
practical training in the laboratory of Yu. I. Zhuravlev, doctor of physical-
mathematical sciences and laureate of the Lenin Prize, the founder of the
Soviet theory of recognition.

Twelve years passed. The students became Candidates of Science, workers at
the Computer Center of the USSR Academy of Sciences, and inventors of a new
method of solving recognition problems, The two primary methods of the
present day, created by them, have brought the accuracy of solution of the
problem up to 90-95% and accelerate the solution process by a factor of 3-5.
The young Muscovites have been awarded the Prize of the Lenin Komsomol.

12717
CSO: 1863/85

JPRS-UCC-85-002
4 March 1985

UDC 681.325.5

THE PROBLEM OF CREATING A STANDARDIZED SERIES OF PERSONAL COMPUTERS

Kiev UPRAVLYAYUSHCHIYE SISTEMY I MASHINY in Russian No 5, Sep-Oct 84
(signed to press 10 Aug 83) pp 3-7

[Article by V. S. Mikhalevich and B. N. Malinovskiy: "The Problem of Creating
a Standardized Series of Personal Computers"]

[Text] The chief way for improving the efficiency of our country's national
economy on the basis of widely automating and mechanizing labor both in the
production and nonproduction realms was determined by decisions of the 26th
CPSU Congress and subsequent plenums of the CPSU Central Committee. The imple-
mentation of these decisions depends substantially on the level of development
and accessibility of computer technology for broad application.

The appearance of personal computers (PEVM), which are the first machines in the
history of computer technology of hardware that are designed for individual use,
is a turning point in the development of the technological revolution in the
area of information science, inasmuch as the personal computer is becoming
available to everyone (in terms of cost) and a powerful universal tool that
repeatedly improves the productivity of the intellectual labor of specialists
with various specializations [1-3].

An analysis of the status of operations in the area of creating and using
personal computers abroad confirms the high efficiency of their use and their
rapid and broad dissemination in the most diverse realms of human activities
that are connected with obtaining and processing information. The sharp com-
petitive struggle between firms and the absence of planned management of the
economy with the capitalist method of production led to a large variety of
personal computers [4,5].

In our country the potential demand for personal computers is extraordinarily
great and their use must yield substantial economic impact. Unfortunately, the
development of personal computers that is being conducted at the present time
is being poorly coordinated and the personal computers ("Agat," "Veformica,
SO-04 and others) that are being produced by industry do not possess a suff-
icient degree of compatibility.

The planned nature of a socialist national economy and the necessity for opti-
mum use of available resources exclude the need for creating a large quantity of

types of personal computers that are approximately identical in their
possibilities. In the present article, an attempt is made to substantiate the
necessity and to show ways for developing a standardized series of personal
computers, the individual models of which in the technical solutions and soft-
ware realms would be oriented towards organizing the work places of specialists
with various specializations—administrators, researchers, economists, engi-
neers, designers, physicians, teachers, as well as for everyday applications.

The economic impact from using personal computers is formed by virtue of
improving productivity in the realm of intellectual labor by means of providing
each specialist with a work place that is oriented in the best manner towards
his specialized activities and with a transition to ideal, highly efficient
manufacturing methods for performing administrative, research and planning
operations, public services, and others.

The individual purpose of personal computers demands organization of their
massive output, rigidly limits their cost, and requires maximum simplicity also
in using small outlays for servicing. In connection with this, it's necessary
to stipulate the following with the development of personal computers:

—maximum reduction of cost for a personal computer and compatibility of all
models of a series, the design execution of which would meet the requirements
of individual use and miniaturization of peripheral devices,

—maximum level of standardization of design and technical solutions and
software and methods support, including means that provide for the organiza-
tion of work places and local networks,

—evolutionary merging of telephone communications networks with local networks
on the basis of personal computers and transition to communications channels
that provide for simultaneous transmission of data, voice and graphics, and

—creation of a wide selection of applications programs for basic applications of
personal computers, as well as network software for operating personal compu-
ters in a network with local and distributed data bases. Software must be
oriented towards the user who doesn't have experience in operating a computer.

The selection of software and hardware of a series must be open with the
aim of providing for constant development and modernization.

Analysis of the architectural and structural solutions of foreign personal
computers shows that, in spite of the availability of a large number of diverse
models of personal computers that are being produced at the present time by
various firms, one can reduce their organization to one well-known main modular
architecture .

While considering the experience of creating and operating YeS and SM compu-
ters, as well as taking into account the application areas of personal compu-
ters, it s advisable to include several modifications of general purpose per-
sonal computers (for organizational control, scientific research, engineering
calculations, and so forth) and several modifications of domestic purpose

personal computers (for home use, instruction, and others) in comprising the
/first priority/ [in boldface] of a standardized series of personal computers.

For example, microprocessor complete sets of the 1810VM86 or 580IK80 series can
be used as the basic component base for creating /general purpose/ tin
italics] personal computer models of the first stage, The following must be
included in a personal computer like this: an 8 or 16-bit central processor;
an OZU [main memory] with a capacity from 16K to IM bytes; a PZU [read-only
memory] with a capacity of 16K-64K bytes; a keyboard (60-120 keys); a VZU
[external memory device] (1-2 NGMD [flexible magnetic disk unit] or a small
size NMD [magnetic disk unit] with a capacity of not less than 10M bytes); an
alphanumeric display unit to an ELT [cathode ray tube] (80 x 24) and, in addi-
tion in higher-end models, a graphic color display -unit (512 -x 512); a printer
(a wide-format thermal printer in newer models and a small size color ink-jet
printer in higher-end ones)5 a controller for communications with the network and
an instrument interface controller$ and a power supply unit with a storage
battery.

In addition, depending on the problem orientation in the composition of indivi-
dual models of general purpose personal computers, it's necessary to stipulate
an arithmetic expander, a multipurpose unit for debugging software
modems, a controller for the input and output of analog signals with a set of
modules, a plotter and a plotting board for figuring. All models of a general
purpose personal computer must be executed in the form of a single design,
however, in the higher-end models of the series of units they will be remote
(printer, analog signal input-output unit, schedule output unit, plotting board
for figuring). Free connectors will be stipulated as well.

Microprocessor sets of the 580IK80 series can be used as the basic
component base for creating /domestic purpose/ [in italics] personal computer
models of the first stage, Structural units like the following must be
included in an approximate manner as well in the composition of these models:
an 8-bit central processor, a main memory with a capacity of 16K-64K bytes, a
read-only memory with a capacity of 16K-64K, a keyboard (64-80 keys), an exter-
nal memory device (KNML [cassette magnetic disk unit] or NGMD), a flat display
unit (16 lines) or on a cathode ray tube (80 x 24), and a power supply unit
with a storage battery.

Depending on the problem orientation of these models in them, it's necessary to
stipulate a printer, a controller for switching on a home black and white
and color television set, and a controller for communications with the network.
All models will be executed in the form of a single design and only a printer,
if needed, must be remote.

The /second stage/ IIn boldface] of a standardized series of personal
computers must include models that are developed with regard to the prospects
of developing a component base and architectural and structural solutions.
Right now the characteristics of these models can be indicated only in a
hypothetical manner.

It is advisable to develop the following as basic models of a personal computer
series of the second stage; (1) a 16 and 32^bit personal computer with
flexible architecture on the basis of bit-sliced microprocessor sets with
their subsequent implementation on the basis of a single-chip microprocessor
with flexible architecture and (2) a 16 and a 32-bit high performance personal
computer for using them in multiprocessor systems.

Models of the series of personal computers of the second stage will be distin-
guished by an improved intelligence level and the ease of using it as a human
assistant, particularly to provide for inputting and outputting information in
a diverse form and processing it in a natural language in the interactive mode
and for implementing the functions of instruction and the deductive generation
of conclusions. The load on software will be substantially reduced thanks to
the automation of information processing in the form of specifications, the
implementation of languages close to the user's language and the appropriate
architecture of the computer, and the provision of resources for using the
program product of computers of previous generations.

It's advisable to be oriented towards the use of semiconductor multipurpose and
made-to-order SBIS [very high-speed integrated circuits] with several hundreds
of thousands of gates on a single chip.

The architecture of a personal computer of the second stage must provide for
interfacing basic models with special processors and the appropriate peri-
pheral equipment for input, recognition and output of conversational speech;
for recognition, processing and output of graphics; as well as for analytical
calculations, numerical simulation and processing real-time signals.

The creation of personal computer models of the second stage in a series will
demand the execution of a large volume of theoretical research on artificial
intelligence, on the development of new computer architectures and distribution
systems for processing information with improved resources, and on the creation
of a long-range component base for fifth generation computers and high-power
automation systems for programming, as well as small-size, high-speed multi-
functional peripheral units.

The /main modular principle/ [in italics] of building, which makes it possible
to build various configurations of personal computers depending on their speci-
fic application, will dominate in personal computer models of the second stage
just as in models of the first stage, In this regard, the set of modules will
be open, I. e. to allow for adding on and continuous modernization. The second
architectural principle—/compatibility/ [in italics] in the internal lan-
guages of higher-end models relative to the lower-end ones (including first stage
models)—will be observed as well and that will provide for arranging hetero- '
geneous software according to internal languages, as well as for implementing
languages that are oriented towards the user.

The necessity of developing and organizing the production of a set of means for
building /local networks/ [in boldface] on a personal computer base arises in
connection with the large-scale application of personal computers. Thus,
already during the development stage of a personal computer series of first

stage, it's necessary to create a set of controllers, adapters and trans-
ceivers that provide for building high-speed (5-20M bits per second) local
networks on the base of a common bus (of the Ethernet type with a CSMA-CD type
protocol) and cyclical networks with sequential transmission of a control
marker (Arcnet type) for transmitting data by a coaxial cable and fiber optics
circuit, as well as aids for organizing small local networks with simplified
protocols and the transmission of data by different two-wire circuits (includ-
ing dedicated telephone channels) with a rate of 50-500K bits per second. A
series of modems that are compatible with the personal computer in terms of
design must be developed in addition for output to the global networks.

We are faced with developing network modules in designing personal computers,
standardizing interunit interfaces, and determining the types of necessary
coaxial cables, fiber optics circuits and interfaces with them.

It is advisable to create a multipurpose microprocessor communications junction
that provides multinetwork functions for a personal computer series of the
second stage.

A junction like this must include a microprocessor (from the personal computer
series), a set of systems-wide and applied programming modules that adapt the
communications junction to different networks, sources and receivers of the
most diverse information (data, voice, graphics), interface modules and modules
for joining with data transmission channels.

The software of a network must include the following: a multijob, real-time
operating system that consists of a nucleus, low-level standardized network
service modules, protocol modules that differ from the standard, and interface
protocol modules (foreign analogs are CP/Net and UNIX). Modules for supporting
the protocols of the three upper levels of network service must be included as
well in the software of a personal computer network.

For providing the local networks of personal computers with a centralized means
of storing information, it's advisable to include units for storing and servic-
ing data banks in the composition of hardware for a personal computer series
of the second stage.

The orientation of personal computers towards the mass user and the diversity
of their applications determine the distinguishing features of the approach to
developing their /software/ [in boldface], although in principle its structure
differs very little from the software structure of multipurpose computers.

/Systems software/ [in italics] of a personal computer series includes a set
of programming modules that implement the organization and execution of func-
tions of applied tasks in a specific personal computer configuration (OS) Ioperating
system] and the programming modules of translators, assemblers, compilers and
interpreters that provide for the effective interaction of users with the
personal computers in high-level languages.

It's possible to single out three types of operating systems that are being
used in personal computers—single-programming, multiprogramming and real-time.

At the present time the CP/M-80 and CP/M-86, which are distinguished by con-
ceptual simplicity, reliability and ease of assimilation and working with them,
are the most widely disseminated operating systems. The MP/M-80, MP/M-86 and
CP/Net systems, which have a file structure that is compatible with the file
structure of the CP/M system, are the evolution of them and that makes it
possible to use software that was created earlier. The MP/M system is a
multiterminal version of CP/M that provides for more efficient use of such
personal computer resources as the processor, main memory and external memory.
The CP/Net system is oriented towards creating the local networks of personal
computers and it has the means for generating various exchange protocols
between personal computers. It's necessary as well to consider the UNIX, XENIX
and OASIS computer-independent systems as prospective operating systems,

BASIC, Structural BASIC, PASCAL, FORTRAN, ADA and others have obtained wide
dissemination in personal computers as high-level languages. It's necessary to
note a number of tendencies that are connected with the expanded use in per-
sonal computers of structural languages which are oriented towards a specific
application. In addition to the complete set of compilers, practically all
operating systems include filing systems and control systems of relational data
bases (DATASTAR, BASE-II, SUPERSOFT), and for all categories of users that
substantially simplifies the solution of tasks for creating and updating laree
information files of a different structure.

The /applied software/ [in italics] of personal computers consists of a set of
problem-oriented modules (applied program packs) that provide their problem
orientation.

Since personal computers are oriented towards the mass user, the demands, which
are similar to the demands on a consumer item, are on the applied software of
the personal computers: it must be simple in accessing, accessible to the
unskilled user, and always ready for use.

In many ways, the effectiveness of using personal computers and the automated
work places that are being created on their basis is determined by the possibi-
lities of the /peripheral units/ [in boldface], and first of all the informa-
tion display devices—the display units.

The demands of users on the display units are extraordinarily diverse—from
displaying simple character information to analysing and synthesizing complex
graphic scenarios. Therefore, the creation of a multipurp'ose display unit that
satisfies the widest range of personal computer users is not advisable because
of the high cost, complexity and notorious excessiveness of its technical
implementation.

It's necessary to develop a series of video terminals with a reorganizable
structure that are modularly expandable and compatible in terms of software,
hardware and design. The characteristics of video terminals like this can be
changed in accordance with the demands of users during the creation of auto-
mated work places depending on the specific practical task.

Multipurpose coding units of the plotting board type, which provide the follow-
ing, are necessary for the input of graphic information to personal computers:

—input of symbolic information with an unlimited alphabet (an open set of
symbols can be obtained through a simple change of alphabets in the unit's
operating field),

—input of symbolic information by means of manual selection of graphics compo-
nents on a display screen, i. e. the user actually has available a keyboard
that is being received in a programmed manner (numerous television video games
are built in this kind of information input), and

—input of manuscript and graphic information.

When creating personal computers of the second stage, it's advisable to supple-
ment the multipurpose symbolic and graphic input with a voice input of informa-
tion, the digital coding of which can be accomplished by a microphone with a
digital output that is adaptive in sensitivity. Technically, the task of
digitally coding a wide range of acoustical signals can be solved by virtue of
expanding the set of discrete components that are designed for processing
analog signals.

While taking into consideration the great variety of automation tasks in which
personal computers can be used, a standardized system of hardware must be
developed for interfacing personal computers with entities with a main modular
organization that provides for the building from standardized units of measur-
ing and (or) executive subsystems that are diverse in composition and technical
characteristics. In this regard, it's necessary to envisage the possibility of
unlimited extension and improvement of the products list of functional units
without changing the structure, organization and design of the over-all portion
of the basic modification.

Automated work places are being created on the base of personal computers:

(1) in the area of administrative management for the manager of an enterprise
(institution, organization), an economist, a secretary-abstractor, and workers
of personnel departments and other departments and services,

(2) in the area of scientific research and development for conducting scien-
tific, theoretical and experimental research, planning and design operations,
as well as for automating reference information operations and formalizing
research results, i. e. for editing, storing and printing out texts, drawing
sketches and schedules, preparing technical specifications, and so forth,

(3) with the aim of instruction for students of schools, tekhnikums, VUZ's and
various additional training courses, as well as for teachers and developers of
instructional courses,

(4) in the area of medicine for solving tasks of automating the diagnosis of
patients, organizing reference services and managing paperless medical case
records, and

(5) in the area of everyday applications for organizing television video
games, controlling household appliances, obtaining information from an urban
data bank, and managing a family information data base, home instruction, and
so forth.

Already during the creation of a standardized series of personal computers of
the first stage, a personal computer of microprocessor development
(PEVM-R) will be manufactured for independent debugging of software
and hardware units of microprocessor equipment, its comprehensive debugging, as
well as for monitoring, preventive, and diagnostic operations. During indepen-
dent debugging, the software of the PEVM-R will provide for simulation in time,
which is close to the actual one, of all hardware assemblies of the micro-
processor equipment that is being developed and the information streams that
are circulating through the input-output ports; the assignment by the operator
of the initial condition of the memory cells and program-accessible assemblies;
the test run of a program until execution of the prescribed conditions and
output of the contents of the memory cells; and so forth. Depending on the
task that is being solved, the PEVM-R will simulate the missing hardware assem-
blies of the microprocessor equipment, while assigning to the operator all the
enumerated resources.

Thus, the creation of a standardized series of personal computers will exert a
substantial influence on the further development of computer technology The
functions of hardware of VTs Icomputer centers] will be changed substan-
tially: on the one hand, a considerable volume of computations, with which
personal computers will be loaded, will be removed from them; and, on the other
hand, the possibility and necessity are appearing for a problem orientation of
hardware towards the most complex tasks, the solution of which for the time being
is too much for modern computer technology, The appearance of personal com-
puters and local networks on their basis will accelerate the merging process of
computer technology and communications into a single system
for processing and transmitting information [6].

BIBLIOGRAPHY

1. Romanov, A. K., "Microprocessor Technology and Automation of the National
Economy," MIKROPROTSESSORNYYE SREDSTVA I SISTEMY [Microprocessors and
Systems], No 1, 1984, pp 3-6.

2. Naumov, B. N. and Giglavyy, A. V., "Microprocessor Manufacturing Methods—
The Basis of Long-Range Computers for Mass Application," MIKROPROTSESSOR-
NYYE SREDSTVA I SISTEMY, No 1, 1984, pp 7-10.

3. Proleyko, V. M., "Microprocessor Aids of Computer Technology and Their
Application," MIKROPROTSESSORNYYE SREDSTVA I SISTEMY, No 1 1984
pp 11-16.

4. Gromov, G. R., "Personal Computations—A New Stage of Information Tech-
nology," MIKROPROTSESSORNYYE SREDSTVA I SISTEMY, No 1, 1984, pp 37-50.

10

5. Yakovlev, Yu. S., Novikov, B. V. and Nesterenko, N. V., "Features of the
Application and Architectural and Structural Organization of Personal
Computers," (review), UPRAVLYAYUSHCHIYE SISTEMY I MASHINY, No 5, 1984,
pp 7-12.

6. Glushkov, V. M., "The Bases of Paperless Information Science," Moscow,
NAUKA, 1982, 552 pages.

COPYRIGHT: IZDATEL'STVO "NAUKOVA DUMKA" "UPRAVLYAYUSHCHIYE SISTEMY I MASHINY"
1984

9889
CSO: 1863/69

11

JPRS-UCe-85-002
4 March 1985

MICROCOMPUTER REPAIR SERVICE EXCORIATED

Kishinev SOVETSKAYA MOLDAVIYA in Russian 5 Oct 84 p 4

[Article by Ye, Zamura: "The Computer For-Interior Decoration"]

[Text] The story we are about to tell has become overgrown with a thick
dossier of incoming and outgoing documents.

It all began when the computer complex received in November of last year by
the Structural Mechanics Department of the Kishinev Institute of Agriculture
imeni Frunze proved to be faulty.

"The display doesn't work!" announced the head of the Kazan plant, responding
to the alarm. "I can't get it to work. Take it to Fryazino, where it was
manufactured,"

The answer received from Fryazino was as short as a telegram: Consult Kazan
for all problems in the use of computer complexes.

After a long and fruitless correspondence, department head Yu. Mongolov
finally discovered the following! Since the peripherals of the computer sys-
tem are obtained by the Kazan plant as finished articles by agreement with the
Fryazino plant, it is not appropriate to fix them. But appealing to Fryazino
also proved useless: after the article delivered to the assembly factory
has passed Inspection on receipt, the supplier is no longer responsible.

It would need an electronic brain to solve this conundrum. But the machine
was sick and could offer no assistance. It was then that the department, in
despair at untangling this Gordian knot, sent a letter requesting help to
the Kazan Oblast Party Committee.

The system for which a considerable sum had been paid was finally fixed as
a special dispensation after a half year of Idleness. But the favorable
ending of this story is hardly grounds for optimism. Today, two of the
five computer complexes at the institute need repairs, but there is no one
and no place to do this.

Microcomputers with peripherals are widely used in various branches of science
and industry at the present day. The Kishinev store "Instruments" has sold

12

more than 20 of these in the past year alone, What is the fate of these
devices? Unfortunately, many of them are nonfunctional today, as at the
agricultural institute: the complex fragile systems require constant quali-

fied maintenance.

"Our Elektronika DZ-28 has been down for one and a half years" complains
A. El'kin, dean of the department of semiconductor and microelectronic de-
vices at the Kishinev Polytechnlcal Institute imeni Lazo, "The system costs
25,000 rubles, its service life is 10 years. Thus, we have already
irretrievably lost nearly 4,000 rubles.

But there is still more in the matter of losses. At the Department of
Mechanization of the Moldavian Scientific Research Institute for Viticulture
and Wlnemaking, for example, a computer complex based on the Elektronika
DZ-28 is used for seasonal field studies. If the computer fails, as
happened this summer, the Information must be processed "by hand", Work that
the computer can do in an hour takes around 1-2 months for a person. Which
means that the continued testing of a new tractor for grape planting must
wait until the following season.

But who fixes a faulty computer? Specialists in maintenance of the micro-
computers of the Elektronika DZ-28 system are located only in Kazan, Smolensk
and Yerevan. Previously, there used to be a travelling repair brigade at one
of the Yerevan plants, for example, Requests from users in nearby rayons
and oblasts would pile up over several months until a specialist was sent out
to "service" the entire region,

Today, "Mohammed comes to the mountain": giving up hope in arrival of repair-
men, the members of the scientific research institutes of Moldavia simply load
the packaged computer complex (weighing, incidentally, more than 20 kilo-
grams) onto their back in a knapsack and, with the blessing of their
superiors, head out for the manufacturer. If the capricious machine is not
damaged by jostling on the way back, the repair problem is solved—until the
next breakdown, of course.

Incidentally, the consumer who has learned what to expect from repair of
electronics is seeking other ways out of the dilemma. Who, for example,
would advertise the fact that two out of three expensive systems purchased
are intended,..for spare parts? Especially since no one is presently check-
ing on the utilization coefficient of the hardware,

But just how and where does one rehabilitate an electronic brain? Faced with
this question, a person unfamiliar with problems of servicing of micro-
computers would first consult the Kishinev plant for repair of computer
technology,

"But to no avail!" chorus the director of the factory G. Benzar' and his
assistant V. Novitskly. "We have neither the equipment nor the specialists
needed for repairs. Thus, according to instructions, the enterprises manu-
facturing such equipment are the ones that should maintain it, But our
assortment covers the hardware of the system TsSU SSSRJ paper punching and
keyboard machines, calculators,,.."

13

Still and all, there may be a solution. Regional centers must be created
for maintenance and repairs of microcomputers of all systems. In regard to
Moldavia, why not organize such a center on the premises of the Kishinev
factory for repair of computer technology?

And the obstacles mentioned by those in charge of the factory are not all
that insuperable; it is not likely that any enterprise manufacturing a
microcomputer will refuse to help with the necessary repair equipment or
training of specialists.

The Gosplan of the Moldavian SSR should seriously study this problem, equally
important to all the offices and organizations of the republic making broad
use of microelectronics.

The minir-computer is not meant to be an interior decoration.

12717
CSO: 1863/85

14

JPUS -UCC -So -002
4 March 1935

HARDWARE

UDC 681.325.5-181.48

USE OF FUNCTION PROCESSORS IN MULTIPROCESSOR SYSTEMS

Leningrad 1ZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENTYs PRXBOROSTROYENIYE
in Russian Vol 27, No 5, May 84 (manuscript received 4 Oct 83) pp 39-42

[Article by A. V. Anisimov, A. V. Kraynikov, B. A. Kurdikov and V. B. Smolov,
Leningrad Electrical Engineering Institute imeni 1. I, Ul'yanov (Lenin)]

[Text] The organization of multiple-variable function
computation in multiprocessor systems is analyzed.
Transmission of initial data to the processor solving
the task at hand is proposed via a memory register array
whose functions are similar to those of a list of formal
subprogram parameters. The advisability of Incorporating
an integral matrix multiplier in the processor used for
computing multiple-variable functions is indicated.

The use of multiprocessor systems is an effective means of reducing calcula-
tion times through parallel operation of separate processors. The effective-
ness of such systems is determined by the degree to which their architecture
corresponds to the characteristics of the problems to be solved. Multi-
processor systems are used in the solution of an important class of problems,
those concerned with the-modeling of complex dynamic systems. This class
of problems is characterized by the presence of a large number of operations
involving the computation of multiple-variable functions. In aircraft model-
ing for example, these operations take up some 40-60 percent of the total
computing time. With this in mind, it seems advisable to incorporate func-
tion expanders dedicated to the computation of multiple-variable functions.
Overall system efficiency can be increased substantially by ensuring parallel
operation of the expanders and central processor. For this, the questions
of (1) organizing initial data transmission to the function expanders and
receipt of computation results, (2) ensuring parallel central processor/func-
tion expander operation, and (3) synchronizing the calculation processes
carried out by the function expanders and central processor must be resolved.

Tasks are executed by a computer configuration which is illustrated in
Fig. 1, This architecture includes a SM EVM (International System of Small
Computers), equipment (processor, memory and peripheral units [PU]) connected

15

to Its common bus. The function expansion unit is connected through a common
bus segment, formed as a typical interface segmentation device (SGI).
Functional processors designed to solve systems of linear and nonlinear
equations with variable coefficients are connected to this segment. The
number of such segments can be increased if necessary. Because the inter-
face is partitioned into segments, its basic portion can be relieved of inter-
changes required for operation of the function expanders,

1
2
3
4
5
6
7

Common bus
Memory, SM EVM
Processor SM EVM
Interface segmentation device
Peripheral unit (PU)
Peripheral unit (PU)
Common bus segment

8 Local memory
9 Multiples-variable function (1)

10 Function expander (2)
11 Function expander (end)

_Ü)
lutat) a/una

nan/iTb

CM sen
Iponeccop

en 3&n
coi

(2)

(7)

ey

(3) (4 (5) (6)

CezncHrrr oduicu wt/Hbi

flOKCtAbHOjl

nanjtmb

(8)

npomccop

r

fP <7>P <pnn
ID W \(K)

(9) (10) (11)
Fig. 1

We will illustrate the special characteristics Involved in the use of func-
tion expanders using the example of a multiple-variable function (MVF)
processor, which is most interesting from the standpoint of organizing inter-
action with controlling subsystems. Table interpolation methods are used in
order to compute functions in the MVF processor. Here -various functions are
achieved by a single Interpolation program by means of shifts in a nodal
point table, Nodal point tables corresponding to the functions reproduced
are stored in the segment's local memory. Several Interpolation formulas,
selectable upon formulation of the application program, are included in the
MVF processor to ensure effective execution of functions withthheir special
characteristics. Let us examine the process of initiating multiple-variable
function calculations. It is assumed that nodal point tables for all func-
tions which might be encountered in modeling the dynamic system have been
previously loaded into the segment's local memory. Formulas of the following
type are used for calculating these functions:

f(x,+ph, yj + qk) = -JJl-1)
2 —/(-«i. yy—*) +

P P2l) f (xi ~ A. yj) + (l-pq-p2~ q*) f (xt, yj) -f
_, p(p-2g+\) 1 -

+pqf(xt+fi, y-j + k),

16

where x, , yi are nodal values for the arguments; h, k are separations between
nodal points; and p, q are standardized values for the arguments,

The above formula corresponds to uniformly distributed interpolation nodes,
This allows the use of basing methods in the search for interpolation nodes
in local memory. Arguments X,Y, consisting of an address portion XA, YA
(kx, ky of high order bits) and normalized arguments p,q (n - kx, n -ky
of low order bits) are used to determine the location, relative to the base,
of arrays containing nodal points for the function. Depending on the type
of function, the size of kx, ky can be a variable, giving rise to the neces-
sity for a clear indication of the length of the address portion for each
argument in each of the functions to be calculated in the MVF processor.
Information on the size of kx,ky is placed in the table header for the

designated function.

To start the MVF processor, the central processor loads its control registers
with a control word consisting of an operation code and an address (Fig. 2).
First the arguments must be transferred to a memory register established for
each function expander. The operation code (K0p) selects one of the inter-
polation algorithms and the address specifies a function table. This completes
the multiple-variable function computation startup sequence and the MVF pro-
cessor itself Is responsible for further execution, Including converting
arguments, reading nodal points from segment local memory and computing
functions according to the interpolation formula.

(1) (2)
(8)

KOn Aflpec
O^tMcrjt wuMtx

(3) AjiropHTM
HHTepnCIIHUHH

kx

ky

/(*!. yt)

/(*2, r2)

....

(4)

(5)

(6)

(7)

1 Operation code
2 Address
3 Interpolation algorithm

4-7 (stet)
8 Common bus
9 Interrupt logic

10 Direct access logic

11 Bus driver
12 Status and control register (SCR)
13 Microprogram control unit (MCU)
14 Central processing unit (CPU)
15 Array multiplier (AM)

Buffer register (BR)
Buffer register (BR)

Fig. 2

D = Data
M = Array
B = Input

Fig. 3

17

Let us examine the MVF processor's operation according to the block diagram
provided in Fig. 3. When calculation begins, the base address of the table
for the function undergoing processing is loaded into the address register,
which enters into the direct access logic, The start of calculation initiates
the shift of the operation code to the status and control register (SCR).
To facilitate computation according to the interpolation formula contained
in the MVF processor, an array multiplier (AM) is included in addition to
the microprogram control unit (MCU) and central processing unit (CPU). To
carry out computations in the array multiplier, factors from the CPU data
output are transferred to buffer registers (BR), Because the CPU data
output port is also connected to the common bus, a bus driver (BD) is in-
cluded in the MVF processor in order to assure that this operation occurs
regardless of bus status,

The MVF processor has direct memory access in order to obtain table data from
the segment local memory during the calculation process. Upon completing the
function calculation, the MVF processor transfers the results into a memory
area established for each function expander and Initiates the CPU interrupt
required to synchronize computational processes, Several function expanders
can operate in parallel. Any conflicts which may arise are resolved by the
interface segment. The assignment of priorities among the function expanders
is determined by the frequency with which they are accessed and depends on
the frequency proportion of operations with specific algorithms. For example,
a high specific share of function calculation operations gives rise to higher
priority for the MVF processor,

A characteristic of the organization of recourse to a functional processor
analyzed is its similarity to subprogram access. The transmission of argu-
ments and results via a fixed memory area is a variation of the implementation
in which functions are calculated according to a list of real subprogram
parameters. In this variation the main program, executed by the CPU,
accesses a function expander-^the MVF processor, This reduces the time of
task allocation among the function expanders and assures their capacity to
work independently within the limits of the common bus segment.

The paper is recommended by the Department of Computing Engineering.

BIBLIOGRAPHY

"Malye EVM i ikh primeneniye" [Small Electronic Computers and Their
Application]. B, N. Naumova, editor. Moscow: Statistlka, 1980—231 pp.

COPYRIGHT: "Izvestlya vuzov SSSR-Priborostroyeniye" 1984

12746
CSO: 1863/174

18

JPKS-UCC-85-002
4 March 3985

TJDC 681.325

BIPOLAR NONSWITCHING LOGIC ARRAYS^-UNIVERSAL COMPONENTS OF FUNCTION EXPANDERS
FOR COMPUTATION OF ELEMENTARY FUNCTIONS

Leningrad 1ZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: PRIBOROSTROYENIYE
in Russian Vol 27, No 5, May 84 (manuscript received 27 Jan 83) pp 48-53

iArticle by V. D. Baykov, A, I. Krys\ Leningrad Electrical Engineering
Institute imeni V. 1, Ul'yanov (Lenin)]

TText] We examine two versions of the design of function
expanders intended for "digit by digit" calculation of
elementary functions in Series K1804 microprocessor devxces
(MD) and in bipolar nonswitching logic arrays (NLA).
Specific rated values are given for equipment, time,
energy and cost factors in the design and production of
both types of function expanders. The advantages of
functional processor production based on the NLA
variation are indicated in comparison to the MD version.

Continual improvement in the architecture and structure of microprocessor
large-scale integrated circuits and the growth in the number of microprocessor
devices gives the impression that microprocessors are becoming universal
basic components capable of rapidly covering shortfalls in a range of
specialized computers, such as function expanders designed for the calculation

of elementary functions.

We will consider the potential possibilities of the functional expanders
designed in two variatlons-on the elements of one of the most promising 4^
bit s3ice series K1804 microprocessor devices (MD) II], and on the basis of_
bipolar nonswitching logic arrays (NLA) T.2] . The validity of such a compari-
son is explained in that MD components and NLA chips are produced by similar
technologies and are capable of nearly Identical high-speed operation. A_
modified '"digit by digit" iteration method with changing sign-permanent sign
increments was chosen as an effective computation method for the compari-
son of both versions 13]. As an example we will examine function expanders
used in logarithmic mathematics because they are the most complicated and
claim universality of application, I.e. they have the capacity to compute
other functions without requiring configuration changes.

19

Recurrent correlations chosen for microprogram- and hardware-calculated
logarithmic functions take the form

(1)

(2)

Stan 1
/+i ■

--1, ec;iH A7n> 1,

+ 1, ec/m X,+l< 1,

0, ccm ^+1«==— l,

1, CCJIH 5<+1 = + 1,
3ran 2 {e,+I = 01 + logB(H-<?t+r2-(.-+i))>

9 M =

1 Stage 1 eow - if 2 stage 2

where 1=0,1,2..., (n-1); X±, Y:± are the current values of argument X-£- q
are the values of the controlling operator corresponding to the sign change
or sign maintenance processes; and 0^, is the current value of the function
being computed.

Initial conditions; X0-X*, Yo=0, £Q=1, q0-=l, 9o-0, XlO.ljl].

Result ©n ■= -logbX

In order to avoid limiting the generality of research conducted, in order to
compare the expenditures required for the design of function expanders based
on MDs and those based on NLA hardware, there is no need to write a micro-
program to compute logbX function in series K1804 microprocessor code It is
sufficient to examine the basic microprogram steps giving primary weight to
time and comparing them in terms of the number and length of steps. The
results of microprocessor analysis are given in Table 1. The number of
steps needed to calculate the log,X function is determined according to the
formula

NT » NMC + (m-1) (NMK ,- NKTU - Nnom) ,
norm

where %K is the number of microcommands; m is the operand word length
%u Is the number of initial conditions; and N Is the number of normaliza-
tion steps. The following conditions were established for the IogKX function
according to recurrent correlations (1): Nni ■= 7, N

norm m-1.

20

(1)

(3)

(4)

(5)

(6)

OciioBHbie luarH MHKponporpaMMHoii
peaflH3auHK

(7)

(8)

(9)

1- 3anHCb na<iflJibHt.ix ycnoBnii,
BBOA ncpeMeiiHofi X

2 HopMaJiH3aunH nepeMeHnofi X
>X*)

►3. CABHr Yt Ha 1 pa3pHA
CflOJKeHHe Xi c Yt

CpaBHeHHe (Xj+i — 1) > 0
BwqHTaHHe
nycTofi TaxT AJifl npHCBoeHH«.
ripHCBoeHHe 3HaMeHH»i 6i+i
J1H6O cjioweHHe H CABHr |
yMHO)KeHHe Ha m-pa3pHAHoe >

MHCJIO i
JIHÖO BHMHTaHHe H CABHr \
yMHO)KeHHe Ha m-pa3pflAHoe |

NHCJIO I

5. npHCBoeHHe 3HaieHHH <?/+,
t riycToii xaKT AJIH onpeAeJieHHH

TeKymero 3naweHHH fy+,

6. flpHCBoeHHe 8^ = 6^
_v e/+1 = e,+ iogfl(i+2-')

-7. nepexoA Ha cneAyiomyio HTepa-
HHK>

(2) TaÖAuifa 1

MHCJIO TaKTOB ft 3aBHCHMOCTH OT
pa3p«A"0CTH m onepanAOB

8 12 16

11

x 2

24

15 23

32

31

64

7

63

2

Table X

1 Basic steps for the microprocessor 'version
2 Number of steps as a function of operand word length m
3 1. Write Initial conditions, Input variable X
4 2, Normalize variable X (X=>X*)
5 3, Shift Y± one bit, Addition of X± and Y±
6 4. Compare (X1+1 T 1) >_«= 0

Subtraction
Idle step for assignment.
Assign value K±+\
or add and shift
Multiply by m-blt quantity
or subtract and shift
Multiply by m-bit quantity

7 5, Assign value q^+^
Idle step to determine current value of Q^+^

8 6. Assign Oi+^öj
9 7, Jump to next Iteration

21

Microprogram execution time is determined by the formula

where T^ is the step duration, For the K1804 microprocessor set, step
duration is approximately equal to the execution time for one microcommand
Tmk, In which TT- Tmk(max)iv 200 ns,

The results of calculating formulas (2) and (3) are shown in Table 2.

We will examine hardware, time, energy and monetary costs In the program/hard'
ware version of logbX function execution in the first version, implemented
according to the block diagram illustrated,

(i:) (2) (3) (4) (5)
Amiapa-

Ko.wieniio BUG /uiii HMMHCJICIIHJI Typiiue BpCMCHHMC 9ncprc- CTOHMO-

(j)yHKUHH log,,* 3aTpaTu ii aaTpaTu TH1CCKHC CTHblC

(6)

(7) ~(8]
(13)

Kopnycax
(20)

saTpaTH 3aTpaTi.i

E w (CIO 1(11 |(i:)2 U4 l (16 ,(i7: (l*) U (21) (2.2)
CO
O .15 CO TO (19) 7.

2
IO u c

s
X

>->
a.
n
o

CQ

a.
CO

CO

-3-

CO

ca t-
cx

a.
X
IO

IO

5
a.
o
u

S
IO
iO

c
ex
o
i:

o

X
5
K
H

TO CJ
<3 s

et
X TO
d
o
o.

CO
o

n

Sä
o
X

D.
n TO

O oo

C

o
CO

C
>>

o oo
5
>»
5=:

oo

5
<
U

tr-

iO

>>
CO

a.
H

a

a)

c
s:
H .^

K

H
<U
cr

TO
n:
s u
o

u
s

a)

TO
HO
U OO

CN

¥3

s
X

o
a
s

H

TO
H

o *:
u

XT

2
CO

1)
H
CO

HU
O-S.

a. rf U to ^C D. 5; o e; O ff£i. D" D" « «c uf
4 1 - 2 1 7 1 3 2 4 21 0,5 22 58 11,6 7,35 260

8 2 2 1 7 1 3 2 4 23 0,5 '26* no 22,0 8,4 405

12 3 2 1 8 2 3 2 4 26 0,5 30 166 33,2 9,5 500

16 4 2 1 8 2 3 2 4 27 1 34 184 36,8 10,0 600

24 6 2 1 9 3 3 4 4 33 1 42 318 63,6 12,3 645

32 8 2 1 10 4 3 4 4 37 1 50 422 84,4 14,2 760

64 16 2 2 1 14 •1 3 ♦1 «1 54 ' 1 82 8381 167,6 1 21,8 | 1225

Table 2

2
3
4

Number of Large Scale Integrated
Circuits (LSD) to compute log,X
function

Hardware requirements (packages)
Time requirements
Energy requirements

5 Cost
6 Operand word length m
7 K1804 VS1 CPU
8 K1804 VR1 ACN
9 K1804 VU1 MCU
I continued on following page]

22

ITable 2 continued]

10 K1804 VU3 CN
11 K556 RT5 ROM
12 K155IR1 Register
13 K155 KP12 Multiplexer
14 K155 IE7 Counter
15 Logic Unit
16 Total No. of packages
17 No, of standard PCBs (240 x 280 um/)

18 No. of microcommands
19 No. of steps
20 Execution time T, msec
21 R, watts
22 Cost of LSI furnished,

rubles

The basic components of a series K1804 microprocessor required for a specialized
calculation unit are the four-bit K1804 VS1 central processing unit (CPU),
K1804 VR1 accelerated carry unit (ACT), four^blt K1804 YU1 microprogram
control unit (MCU), K1804 VU3 MCU control network (CN), and standard integrated
circuits such as a series K556 RT5 ROM, K155 IR1 registers, K155 KP12 shift
multiplexors, K155 IE7 counters and logic units. Table 2 shows the number
of these components and basic cost parameters (as a function of operand
length m).

Table 3 shows the corresponding values for the second design variant based on
a typical array processing device using nonswitching logic array hardware 14].
This assumes an array processing device (APD) consisting of two autonomous
arrays, the control array (COA) and calculation array (CA). The hardware
requirements for such a configuration (HR COA and HR CA) are defined in
terms of.NLA base cells (BC),

1 2 3
Mr

KUOt IM
M«

I' A«*

4 KX J~i,t
-@T

U '

rJ
WA BUS -J M nu

r 3 -li) 10
i

1 MKh Inot further identified] 7
2 K1804 VS1 CPU 8
3 MKh Inot further Identified] 9
4 MKh Inot further identified] 10
5 M x 4 11
6 Counter

Dial Counter
MCU CN
MCU 2x4
RA Inot further identified]
ROM

Logarithmic processor block diagram

23

(3) TaCiAiina 3

4
8

12
16
24
32

78 1
358 .—
922 —

1742 1
4287- —
7581 —

1
2
3
9
16

Table 3

1 Control array
2 Calculation array
3 APD to compute log^X
4 Operand length -m
5 HR (BC)
6 No. of chips
7 HR (BC)
8 No, of chips
9 HR (BC)

BwiHomoiuafl
MflTpHUa

WHCJIO
K|)HCTaJI-

J10I1

nn/ia
2

im.ua
1

(9)
Qu.y,

32 1
224 1 —
576 1 1

1088 1 2
2626 — 6
4746 — 10

110
582

-1498
2830
6913

10481

MUM fl.n» iii.i<nic.ncHiiH \ofinX
 CW

MHCJIO
KpilCTflJl-

JIOH
09)420)
IIH.I.'I

1
wi/ia
2

1
3
6
15
26

(ID (12
ca

0,49
2,49
47
8,4
18,8
38,3

0,28
1,0
4,34
8,06
18,96
38,42

tortr*-)

10 No, of chips

11 T, microsec.
12 R cons., watts
13 No. of boards
14 Cost, rubles
15 Type 1
16 Type 2
17 Type 1
18 Type 2
19 Type 1
20 Type 2

rr

0,5
0.5

O *o
(J c

35
70
140
210
450
910

A comparison of the results In Tables 2 and 3 shows that MPDs based on
NLAs have advantages In terms of speed, power consumption and compact size
regardless of the, operand length involved and, at word lengths of m <_'?-4,
they are superior form the cost point of view,

Proceeding from the uniformity of the recurrent correlations used to cal-
culate various elementary functions by means of the "digit by digit" method,
it follows that the structures (configurations) of these computers, either
based on microprocessors or on NLAs, are invariable and that they can be
used for other functions. In this, both the first and second versions have
equal hardware compatibility factors 15] . The advantages of microprocessors-
based function expanders are seen only with algorithms involving more compli-
cated tasks, such as the solution of linear and differential equations systems,
filter applications and spectral analysis.

The time involved in designing and producing NLA-based array processing
devices is comparable to that of similar devices based on microprocessors.

24

BIBLIOGRAPHY

1, Smolov, V.B., Shumilöv, L. A. "Mikroprotsessory i mikro-EVM."
TMlcroprocessors and Microcomputers]--Leningrad: LETI, 1981. 86 pp

2, "Proyektlrovaniye spetsializirovannykh BIS na baze blpolyarnykh NLM"
iThe Design of Specialized Large-Scale Integrated Circuits Based on
Bipolar Nonswitching Logic Arrays], Krys', A. I., Meshcheryakov, V. M.,
Shumllov, L, A.—Dep, rukopis', 1982, No. 2 (124), No. 47, 54 pp

3, Baykov, V. D.; Smolov, V. B. "Apparaturnaya realizatsiya elementarnykh
funktsly vTsVM" THardware for the Calculation of Elementary Functions in
Digital Computers], Leningrad: LGU, 1975, 96 pp

4, "Postroyeniye spetslalizlrovannyx BIS dlya vychisleniya elementarnykh
funktsly sin <S, cos (S na baze blpolyarnykh NLM" iDesign of Specialized
Large-Scale Integrated Circuits for the Processing of Basic sine <§,
cos (5 Functions Using Bipolar Nonswitching Logic Arrays], Andraus Sueydan,
Krys\ A, I, - Dep. rukopis', 1982, No, 1 (124), No. 53. 20 pp

5, Alkhovlk, A. S., Baykov, V. D. "Mnogofunktsional'nyye matrlchnyye
5 konveyyernye vychislltel'nye ystroystva" iMultifunctlon Array-

Conveyance Computing Devices]. Izv. vuzov SSSR—Priborostroyeniye,
1982, No. 4, pp 48-52

The paper was recommended by the Department of Computing Engineering,

COPYRIGHT! "Izvestiya vuzov SSSR-Priborostroyeniye" 1984

12746
CSO: 1863/174

25

JM<S-UCC-85-002
4 March J985

UDC 681,325.2+681.327.68:778.38

EXECUTION OF CELLULAR LOGIC OPERATIONS IN SPATIALLY CONTINUOUS, BIT SLICE
PROCESSOR

Leningrad IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: PRIBOROSTROYENIYE
In Russian Vol 27, No 5, May 84 (manuscript received 20 Oct 83) pp 53-56

iArticle by V, M. Denlsov, Yu. N. Matveyev, Ye. E. Ochin, Leningrad
Institute of Precision Mechanics,and Optics]

IText] The representation of multilevel images by
spatially continuous bit slices is introduced. The
algorithm for executing cellular logic operations in
the case of such Images is examined.

Cellular logic is widely used in order to develop algorithms for the digital
processing of Images 11,2], A series of processing structures using cellular
logic operations has been developed. The chief drawbacks of such structures
are either large time requirements for processing hlgWesolutlon Images
(those with a large number of sample points in the digitized image matrix)
when these images are scanned with small array processing units, or large
hardware requirements in forming large array processing units (currently
there are processors with arrays consisting of 128 x 128 elements). The
present article proposes an algorithm for executing cellular logic operations
in order to represent images by spatially continuous bit slices, which permits
the processing of higher resolution images using only one processing unit 13],

in any physically implementable system a two-dimensional signal A (x.v) x
ye (-«, +») is limited in space ° '

*i(x. y)^A0(x, y)-rect -,-£—rect -J— ,

where (2*^ x 2y■) is the signal analysis field.

26

In some analog processes, the signal A^ is digitized,

Ai(x, f/) = 2 2Mi'(mAx, nAy)6(x—mAx, y—nAy),
m n

where Ax, Ay are digitization steps; (m,n)eM x N; 6(x,y) is the Dirac delta
function,

In a digital processor the A-^ signal is not only digitized but also
quantized

A3 (x, y) = 2 2 2 a, (max, nAy) 2'8 [x—mAx, y—nAy),
m n /

where le.10,1^1] , 3^(0,1}, I is the number of digits in the binary
representation Ai 0" Ax, n A y).

The Ax signal can also be presented in a quantized spatially continuous form
(QSC form):

A4(x,y)=*lila{(x, y)2\ (D

1-1
where iaAx,y},0 is the set of spatially continuous bit slices (SCBS) for
signal Ai,

Representation (1) contradicts the principles of digital data processing and
does not agree with known analog optical image processing principles. The
overlapping of analog (spatially continuous) and digital (quantized by level)
processing opens the way to the development of processes which offer several
advantages over the analog and digital processes of the traditional structure,
The basic Implementation of such analog-digital processes is found In the
spatially continuous logic unit (SCLU) which executes the following set of
spatial logic micro-operations:

a(x, y) = b{x,y)Vc(x,y) 1

a (Xt y) = b (x - Ax, y - Ay) }' (2)

where a(x,y) b(x,y), c (x,y)e{o,l), v(x,y)e (2xmax, 2y1Jjax) j Ax, Ay are quantities
of spatially shifted functions.

The function arguments (2) are either the results of spatially continuous
analog-digital transformations or intermediate operands stored in memory
(e,g, holographic).

Many operations employed In image processing are linear in nature. Discrete
linear operations used in two-dimensional processing can be described by
means of a generalized linear operator II]?

27

M AT

P(k,l)= 2 2F(m,n)H(m, n;k,l), (3)

where F(m,n) Is an array of MxN elements representing the Initial (input)
image; P(k,l) is an array of KxL elements describing the transformed (output)
image; H(m,n; k,l) is the operator core which makes up the set of weighting
factors, .'■■'■

We will consider the implementation of a class of operators (3) on the basis
of functions (2) using the example of cellular logic operations (CLO) 12].
In developing algorithms we will concentrate on the idealized computer
structure shown in Tig. 1, H operator core weighting factors are stored in
the -microcomputer, images are stored in the spatially continuous bit slice
unit memory in QSC form and the SCLTJ executes the function system (2).

Expression (3) is written as follows:

P(x, y) = '2 Tm,„'[A,]H(m, n), x, y<=(—oo, +oo),
m, tt£Rr (4)

where Rr-r is the point vicinity of the (x,y) point of image A-.; T IA] =
A-^x-mAx, y~nAy) is the shift operator; Ax, Ay are the minimum shif^quantities
defined by yo Tlists of Russian abbreviations give yo as "limiting amplifier"
(ustfwitel'-ogranichitel'); once yo is given as accelerator-amplifier
(uskoritel'T-ogranichltel')— Editor] characteristics.

As a rule, cellular logic operations take place in the vicinity öf an R4
Neimann or an R8 Moore background (Fig, 2,a and 2,b, respectively). Cellular
logic operations (4) in the Moore vicinity have a quantified spatially
continuous form of the type

P{X'IJ) = t-oÄ 2'+i_i, „Lf* (x-mAx- y-n&y)^(m, n), O)

where I,J is the amount of digits in binary representations Ai and N
respectively; a,Cx,y) is the i-th spatially continuous bit slice of image
A±(x,y)5 hj(m,n) is the j~th bit slice of H(m,n) ,

28

(3) , nuKp»-3BM

1 SCBS output
2 SCLU
4 SCBS memory
3 Microcomputer
5 SCBS Input

Fig. 1, SCBS processor structure

«)

if

Q-t 0,0 H
-i.o

s)
1.-1 1.0 1.1

0,-1 0.0 0.1

-1.-1 -1,0 -1.1

Fig, 2, Nlemann (a) and Moore (b)
background vicinity
configuration

The structure of the -microprogram to compute expression (4) through micro-
operations (2) takes the following form (R^Cxjy) is the k~0 SCBS result
P(x,y), Ke[0,K-l):

29

forÄln_0...I-|-j_(_3 loop

Pk{x, y) = 0;
end loop;

for / jn 0 ... I _ 1 loop

][££ J In 0 ... J- 1 loop

for m to -1 ... 1 loop

for n In — 1 ... 1 loop

If hj {m, n) «= 1

then ££ * (x, y) = at (x — mAx, y - nAy)t

for_ k jn / + /.../ + J -f 3 while 6 (x, y) y= 0 loop

' (. y) - *(*, >);

" (•■ y) = >,+y+* (x, y);

n(x, y) = P' (x, y) v *' (xTy);
p' (■*. y) - A+j+k (x, y) v 6 (xTy);
pi+j+k (x, y) = P' (x, y);

b (Jr, y) ~ /7 (AT, jr);
end loop;

end if;

end loops /, j, nt, n

Instructions with the body of the loop are executed in the SCLU while the
remaining instructions are executed in the Tcontrol unit festroystvo upravleniya=
control, control device, control unit, monitor)]. K=I+J+]log9(r+1)[=l+j«4 is
the length of the result; b(x,y), b'(x,y), P'(x,y) « SCBS for storage of
intermediate results; Pi (x,y) = SCBS carry.

Analysis of the microprogram shows that the CLO processing time is TIJrn t
where nQ is the mean number of SCLU work cycles needed to process one image

8

slice, tts is the SCLU cycle time. For the vicinity of R.8, I=J=8 tf =3
microseconds we obtain r=9, nQ=10 and T*17 ms, '

BIBLIOGRAPHY

1, Prett, U, "Tslfrovaya obrabotka izobrazheniy" iDlgital Image
Processing"]: Translated from English, Moscow: Mir, 1982. Book 1-
312 pp; Book 2-480 pp.

2. Preston, K. et al. "Osnovy kletochnoy logiki s prilozheniyaml k obrabotke
izobrazheniy v medltslne" basics of Cellular Logic with Application to
Image Processing in Medicine]. TIIER, 1979, vol. 67, No. 5, pp 149-185

30

3. Denlsov, V. M., Matveyev, Yu. N., Ochin, Ye. F. "Struktura

iture
optoelektronnogo protsessora mnogourovnevykh izobrazheniy
prostranstvennonepreryvnym razryadnym srezam" [Struc
Optoelectronic Processor of Multilevel Images by Means
Continuous Bit Slices], Theses, reports and c
Union School Seminar, Parallel information processing,
L'vov, Session 2, pp, 68-69,

tsifrovogo
po

of a Digital
of Spatially

ommunicatlons/lV All-
4-10 April 1983,

The paper is recommended by the Department of Computing Engineering,

COPYRIGHT; "Izvestlya vuzov SSSR-Priborostroyenlye" 1984

12746
CSOj .1863/174

31

JPRS-UCC-35-002
4 March 1985

UDC 681.324

ORGANIZATION OF CONVEYOR PROCESSING OF VECTOR COMMANDS IN MULTIPROCESSOR
COMPUTER SYSTEMS WITH A REORGANIZABLE STRUCTURE

Kiev UPRAVLYAYUSHCHIYE SISTEMY I MASHINY In Russian No 5, Sep-Oct 84
(signed to press 5 Sep 83) pp 16-21 ' P

[Article by A A. Zabolotnyy, V. M. Kostelyanskiy, G. M. Lekhnova and D. A.
Nedzel skiy: Organization of Conveyor Processing of Vector Commands in Multi-
processor Computer Systems With a Reorganizable Structure"]

[1**11 Multiprocessor computer systems (MVS) with a reorganizable structure of
the PS-3000 type are one of the new trends in the development of MVS. From the

luint »LVieW °f the given °Peration. the following are the basic features of these MVS:

—availability of vector and scalar commands in the system's architecture,

--availability of m single-type control (scalar) processors,

-wide use of the pipeline principle of processing scalar and vector commands,
and '

—availability of a common computer resource that is redistributed in time, and
which consists of n single-type asynchronously functioning processor components
each with microprogram control.

The pipeline organization of processing scalar and vector commands in computer
systems was researched in sufficient detail [1, 2]. In [1], the modes of con-
veyor processing of scalar commands (pipeline processing with interlocks and
without interlocks) were examined, mathematical models of a processing sub-
system m these modes were developed, and the advisability and effectiveness of
implementing a pipeline mode without interlocks were shown. In [2], a technique
was developed for evaluating the processing effectiveness of vector commands in
the start-stop (without overlapping) and pipeline (without interlocks) modes.
It was shown that use of the pipeline mode of processing vector commands makes
it possible to improve the performance of multiprocessor computer systems by
10-30 percent (depending on the type of task that is being performed and the
parameters of the multiprocessor computer systems).

32

In [2], however, effectiveness estimates were obtained without taking into
account the hardware costs for implementing the pipeline mode in the assumption
that the pipeline of vector commands isn't interrupted. Analytical formulas
were cited here only for the upper limit of effectiveness estimates of multi-
processor computer systems, although it was shown that the difference between
the upper and lower limits was insignificant with large-size request buffers.
However, the nature of dependencies for the upper limit of effectiveness
estimates doesn't make it possible to analytically evaluate the degree of
proximity of estimates to the maximum ones depending on the size of the request
buffer.

In the present article, the effectiveness of pipeline processing of vector
commands is examined and analytically researched with regard to interrupts of
the vector command pipeline and the various dumping disciplines of requests for
servicing, as well as the structural and algorithmic aids that make it possible
to provide effectiveness estimates that are close to the maximum ones with
limited hardware outlays (its cost).

/System Description. Basic Model./ [in boldface] The processing subsystem of
the MVS with the PS-3000 reorganizable structure that is being researched
consists of m (m = 2, 4) control processors and n single-type processor compo-
nents (n = 8, 16) that form the computer resource. ;

The control processor reads the commands from the main memory, deciphers them,
generates addresses of the scalar and vector operands, and reads them from the
main memory or the registers. When the next pair of scalar operands or like-
named components of vector operands (request) is ready for execution, it enters
the scalar or vector computer resource respectively (under the condition that
it's free). If the computer resource is occupied, then the next request is
inserted in the buffer (under the condition that there are free spaces in the
buffer). If the buffer is filled, then the control processor is blocked.
After generating the last request of the next vector command, the control
processor changes to processing the next command.

The computer resource of the processing subsystem executes requests in the
order of their readiness. If the request buffer is empty, then the computer
resource is idle.

Since all the control processors are identical and they work in parallel and
independent of each other on various tasks or branches of a single task, then
for evaluating the processing subsystem of an entire multiprocessor computer
system it's sufficient to examine the functioning of the basic system, which
consists of one control processor, one computer unit that is equivalent in
performance to the computer resource and accessible to a single control pro-
cessor, and a buffer for k requests between them.

We'll present the process of executing the sequence of vector commands in a
basic model like this in the form of a two-phase queueing system (SMO) without
losses (first phase is the control processor, second phase is the computer
device) with a final request buffer between the phases and infinite queueing of
vector commands during input of the first phase.

33

Simulation modelling was used in [2] for determining the lower limit of a
processing subsystem's effectiveness (functioning of the basic model was
examined with the random replacement of vector commands and the geometrical
laws of time distribution for generating and executing vector command
requests). In the given study, functioning of the basic model with the random
replacement of vector commands and determined times for generating and execu-
ting vector commands will be examined for obtaining analytical effectiveness
estimates. The correctness of such an assumption is explained by the fact that
the random variable, which is the sum I of random variables with the geomet-
rical (exponential ones are for a continuous period of time) laws of distribu-
tion, has a negative binomial law of distribution (Erlang distribution of I
order is for a continuous period of time), and the larger the value I the
greater the probability of time for generating (executing) a vector command
that is equal to its mathematical expectation. Since the PS-3000 multi-
processor computer system is oriented towards processing vectors with a dimen-
sionality of vector operands £< 256, the random time substitution of gener-
ating or executing a vector command with its mathematical expectation intro-
duces an insignificant degree of error.

We'll use (similar to [2]) the load coefficients of control processor H and
computer resource E, which are the ratio of useful operating time of the units
to the over-all time of their functioning with regard to downtimes, as effec-
tiveness estimates.

/Reasons That Cause Interrupts of the Vector Command Pipeline./ [in boldface]
In general, the reasons that cause interrupts of the vector command pipeline
are the same ones during pipeline processing of scalar commands (informational
dependence according to operands and addresses, conditional transfer commands,
indirect addressing), however, their influence is substantially different.
Thus, during pipeline processing of scalar commands, the indirect addressing of
an operand can cause a delay of the pipeline. During pipeline processing of
vector commands, the influence of indirect addressing is considerably less as a
consequence of the large processing time and the execution of vector commands
Uypical values of dimensionality are 32 <: I ^ 256).

According to [3-5], conditional transfer commands exert a substantial influence
on the effectiveness of pipeline processing of scalar commands.

In the PS-3000 multiprocessor computer system, the introduction of vector
commands into the architecture, the organization of "vector" branchings by
means of various masking vectors, and hardware implementation for generating
masking vectors made it possible to decrease the number of conditional transfer
commands and, accordingly, their effect on a subsystem's processing effective-
ness. Thus, for example, when implementing some algorithm on the vector
operands of dimensionality 4 with the use of scalar commands, it's necessary i
times_to execute the ORGANIZATION OF CYCLE conditional transfer command and
when implementing this same algorithm with the use of vector commands, this
command is absent (under the condition that the dimensionality of the vector
registers is sufficient for storing the vector operands).

34

Hardware costs for support of the pipeline mode is proportional to the depth of
the pipeline (to the number of commands (requests) that are located simulta-
neously in processing and execution). Since its depth doesn't exceed 8
(according to data [6], its depth is 2-4) for the scalar command pipeline,
implementation of the pipeline mode without interlocks doesn't present
difficulties. The depth of the vector command pipeline can reach several
hundreds (depending on the dimensionality of the vector operands), and imple-
mentation of the mode without interlocks will require considerable hardware
outlays, as the effectiveness of their use can be insignificant at that time.

For simplifying control of the vector command pipeline and reducing hardware
costs, it's advisable to implement the mode with interlocks of the pipeline and
with the generation and execution of vector commands according to the order
that they follow in the program. In this case, the informational dependence
according to operands between the vector commands of processing facilitates
(and doesn't hinder as in the case of scalar commands) their pipeline process-
ing. The informational dependence of the WRITE TO MAIN MEMORY vector command
on the result of one of the previous commands, the effect of which on the
effectiveness of the processing subsystem also will be subsequently investi-
gated, is the basic cause of interrupts (interlocks) of the pipeline for the
PS-3000 multiprocessor computer system.

/Evaluating the Effectiveness of a Processing Subsystem During Conveyor Pro-
cessing of Vector Commands With Interlocks./ [in boldface] The analysis of
classes of tasks that are standard for the PS-3000 multiprocessor computer
system (such as linear programming with the use of a simplex method, iteration
methods for solving integral and differential equations, spectral analysis)
shows that their execution times basically are determined by the time of pro-
cessing and execution of vector commands for the addition and multiplication of
numbers with a floating decimal point and the WRITE TO MAIN MEMORY vector
command. For example, the basic program cycle of a Fourier rapid transform
using base 2 contains 6 addition commands, 4 multiplication commands
and 4 commands for writing to main memory. Therefore, we'll examine a
technique for evaluating the effectiveness of a processing subsystem in the
pipeline mode with interlocks in an example of programs that consist of vector
commands of these three types.

We'll designate «, (1<'^3) as the probability of occurrence in the
sequence of commands of the i-type vector command; Hi, M2. (^i, h.) as the
rates for generating (executing) requests of the first (second) type of vector
command. For vector commands of the first and second type (addition and multi-
plication), the rate of generating requests doesn't depend on the type of
command, but is determined only by the architectural features and parameters of
the control processor and the main memory. Therefore we'll assume that fM = H2 = H-

In the PS-3000 multiprocessor computer system, the condition X|>[t> >K2 Jsic]
is performed and the load coefficients are pi = nAi<l, Pf =nA2> 1 [sic]
i. e. when executing the MULTIPLICATION vector commmand, the control processor
is more productive; but when executing the ADDITION command, the computer unit
is more productive.

35

The execution time of the WRITE vector command is determined only by the
parameters of the control processor and by the type of interface between it and
the mam memory. Let's examine the multiprocessor computer system with two
types of interfaces. The first type of interface has two complete sets of data
buses for sending information from the control processor to the main memory
(one complete set of data buses is for sending the address and the other is for
data). The second type of interface has one. If the second type of interface
is implemented in the multiprocessor computer system, then the execution time
of the WRITE command also will be two times greater (for example, when writing
32-bit data). In the PS-3000 multiprocessor computer system, p8=l is correct
for the first type of interface and p2=2 for the second type. The ratio of
rates for generating requests of the main memory to the control processor
during the processing of vector commands of the first (second) type and the
WRITE command is understood under p;, .

We'll examine the conduct of the two-phase queueing system, which describes the
process of executing the sequence of vector commands in the basic model of a
processing subsystem, at the moments of departure from it of the next vector
command.

During the time of execution by the computer device of the first type of vector
command (/.,>,,) , ß-[/(l p,)] requests will leave the buffer, since /
requests will be executed; and the control processor will generate /p, requests
(I is the dimensionality of the vector operands, |/(1 ,.,)| is the closest
integral that is greater than /(l ,„)). if there are i < B requests in
the buffer, then the computer unit will be idle part of the time.

During the time of execution by the computer device of the second type of

vector command (Ä;,<|0 , A ^ |/(p2~l) j requests will be added to the
buffer, since the computer unit will execute I and the control processor will
generate /(>■, (pa->l) requests. If there are i > k-A requests in the
buffer, then the control processor will be idle part of the time.

If the next command is the MITE vector command, then the computer unit antici-
pates its execution by the control processor. Following execution of the MITE
command, the request buffer is released.

We'll examine the functioning of the basic model of a processing subsystem when
dumping requests for servicing to the computer unit by batches according to

// (1<C/;<C/) requests. When n = 1, we have the discipline "first arrived—
first released" (as a rule, it's precisely this discipline of dumping requests
that is used in the majority of models) that provides the maximum (for the
prescribed parameters) performance; however, it also requires maximum outlays
of equipment for technical implementation, since it's necessary to provide for
receiving, following the readiness of the large number k of parallel processes,
selecting requests for servicing, and buffering the results of operations and
their "names" from the computer unit for supporting the required sequence of
their entry into the registers.

When increasing the size of the batch of requests by n times, the number of
parallel processes, which it's necessary to follow, decreases; the regularity

36

of generating a batch of requests, which can be dumped for execution in the
order that they follow in the vector operands (requests inside the batch follow
as well in the order that is prescribed by the program) increases. In this
regard, the necessity for equipment that buffers the results loses its signifi-
cance with the aim of providing the correct order of their entry, the equipment
for following the readiness of the request batches is simplified, and problems
of fixing a program's interrupt point and the possibility of its continuation
following interrupt from the stop point are easily solved. However, when
increasing the size of the request batch, the effectiveness of a processing
subsystem will be lower in comparison with the discipline n = 1 and, therefore,
when examining the functioning of a processing subsystem, we'll determine the
effect of the size of the request batch on evaluations of its effectiveness.

We'll determine the state of the queueing system through the parameter i, which
is equal to the number of requests in the buffer at the moments that the next
vector command leaves the system. It's necessary to note in this regard that
states with 0< /'<|/'pil , where frtp,| is the closest integer that is greater
than «pi , will be absent. We'll designate the interrupt probability of a
queueing system in state a- as P-. The conduct of a queueing system can be
described by the Markov aperiodic chain for which a stationary mode exists [7].
The equation system, which connects the interrupt probability of a queueing
system in various states, has the following form:

1 - o>3) P0 ■-■ M3 v pf

ü-1-K-i

■ 2 'V
i--0

'< ;"" (alP\; li> ["Pll <' < n '< A'<

\i\A MX
P"\A\-1I 10, V p.;

'', «Wzri ntP,..A< n + A<i^k-H;

) - Mjf'i A' A —ß<*'<*;

1 - o)2) i'k < ■■ 0)2 y p. .
/■:■!

37

1

o, <)•>.

o.w.

0,85

oi, 8o
ii = 3»

32 6»! 96

Figure 1. Dependencies of E and H on the Size of the Buffer of Requests k

The determination of ^.oad coefficients of the units was performed with regard
to the fact that the jcomputer resource is idle part of the time in states «/(t</i)
when executing vector| commands if the first type, and the control processor is
idle part of the tim$ in states a,-(A>»>A—A) when generating requests of
vector commands of the second type, (while executing the WRITE vector commands,
the computer resource is idle in all states).

i

The considerable number of equations hinders the derivation of analytical equa-
tion m a clear fofra for P± and load coefficients of the units and, therefore
numerical methods were used. '

38

The dependencies of E and H on the size of the buffer of requests k, when co3 = U
(i. e. in the absence of WRITE _ commands that cause interrupts of the vector
command pipeline), I = 32, p, = 0.5, p2 = 1.5, and (.)r=co2 = 0.5, are cited in
figure 1. As was expected, the maximum values of E and H are attained when
n = 1 (i. e. with the "first arrived—first released" discipline). However,
while increasing the size of the buffer of requests k, even when n = I (k = 2l) ,
it's possible to attain practically the same load coefficient values of the
units as with n = 1; and, in this regard, equipment outlays for controlling the
receipt and dumping of requests and results decrease considerably. An increase
in the size of the buffer from / to 21 practically doesn't entail an increase
in hardware costs with the existing level of integration of memory micro-

circuits . I

The dependencies of E and H on the interrupt probability of the pipeline of
vector commands o>3 are cited in figures 2 and 3 where k = 64, 1 = 32, (>, = 0.5,

l>v. = 1.5, du ■•■■■loo = 0.5 (I m) , p;r;l is the dashed line, and |i;, . 2 is
the solid line.

With an increase in *«»3-~f»:* and the size of the batch of requests n, the load
coefficients of the units are decreased, and, moreover, the load coefficient of
the computer resource is more substantial. This means that when <o;<>() , the
performance of the processing subsystem will be determined by the load coeffi-
cient of the computer resource, which is in the range of 0.5-0.7 for typical
values of subsystem parameters Pi. P2, P3, <o3 . In actual programs—in
addition to the ADDITION, MULTIPLICATION, and WRITE commands—there are vector
commands, which do not require a computer resource (for example, dispatches to
the vector register), as well as scalar commands. Therefore, the load coeffi-
cient of a computer resource will even be somewhat lower than the cited values.

Having organized its use with two control processors, it's possible to increase
the load coefficient of the computer resource (and then also the performance of
the entire processing subsystem). The performance of a processing subsystem
with a common computer resource (OVR) for two control processors when there are
three types of vector commands with determined generation and execution times,
as well as when they are randomly substituted, was examined by a simulation
modelling method. The conduct of the queueing system is calculated (as also
earlier) at the moments that the next command leaves the computer resource.

As was to be expected, the load coefficient of the common computer resource
substantially increased in comparison with the processing subsystem with the
individual computer resources (the parameters pi, P2, p3 are identical in the

subsystems that are being compared) and when <,);,<0,ir> is close to one. It's
necessary to note that a discipline for dumping requests by batches according
to 11--=--1 (when using more complex disciplines with /;</ , the value will be
even closer to one), which is a simpler one for technical implementation (and
the worst one from the point of view of performance), was examined.

Analysis of the dependence of E on the size of the request buffers shows that
buffer A=2/ provides for load coefficient values of the common computer
resource that are close to the maximum.

39

Figures 2 and 3. Dependencies of E and H on the Interrupt Probability of the
Pipeline of Vector Commands wQ

40

It was established experimentally that it's possible to use the approximate
formula F. — 2ll\l{\ +^2i)' , where E-i is the load coefficient of the common
computer resource with one control processor, for estimating the load coeffi-
cient of a common computer resource with two control processors. While yield-
ing to the approximate formula, the degree of error doesn't exceed 3-5 percent
in the broad range of altering p,, (>2, C03

/Conclusions./ [in boldface] 1. It's advisable to dump requests to the
computer resource by batches according to n^.1 requests for reducing hardware
costs , simplifying control of the vector command pipeline, and providing for
the possibility of program continuation when there are interrupts.

2. It's sufficient to have a buffer of requests k='2l in providing for a
processing subsystem's performance that is close to the maximum when dumping
requests by batches.

3. In the PS-3000 multiprocessor computer system, WRITE vector commands are
the basic cause of interrupts of the vector command pipeline that cause a
reduction in the processing subsystem's performance.

4. When limiting the cost of a processing subsystem for increasing the load
coefficient of a computer resource, it's advisable to make it a common one for
two control processors.

BIBLIOGRAPHY

1. Ignatushchenko, V. V., "Conveyor Organization in Controlling Scalar
Commands for Multiprocessor Computer Systems," AVTOMATIKA I VYCHISLI-
TEL'NAYA TEKHNIKA, No 2, 1983, pp 57-63.

2. Nedzel'skiy, D. A., "Evaluating the Performance of a Processing Subsystem
for Vector Commands of Multiprocessor Computer Systems With a Reorganizable
Structure," deposited at VINITI [Scientific and Technical Information
Institute], No 6488-82, 14 pages.

3. Flywn, M. J., "Some Computer Organizations and Their Effectiveness," IEEE
[Institute of Electrical and Electronics Engineers] TRANS. COMPUT., Vol 21,
No 9, 1972, pp 948-960.

4. Ramamoorthy, C. V. and Li, H. F., "Pipeline Architecture," COMPUTER
SURVEYS, No 1, 1977, pp 61-101.

5. Brekhov, 0. M. and Gutsulyak, Ye. N., "The Effect of Branching Commands on
the Performance of Computer Systems," in the book TEORIYA TELETRAFIKA I
INFORMATSIONNYYE SETI [Theory of Teletraffic and Information Networks],
Moscow, NAUKA, 1977, pp 30-37.

6. Kartsev, M. A. and Brik, V. A., "Computer Systems and Synchronous Arith-
metic," Moscow, RADIO I SVYAZ', 1981, 360 pages.

41

7. Kofman, A. and Kryuon, R., "Queuing, Theory and Application,"
Moscow, MIR, 1965, 302 pages.

COPYRIGHT: IZDATEL'STVO "NAUKOVA DUMKA" "UPRAVLYAYUSHCHIYE SISTEMY I MASHINY"
1984

9889
CSO: 1863/69

42

JPRS-UCC-85-002
4 March 1985

UDC 681.325.5-181.4

SYSTEMS DESIGN AND APPLICATION OF COMPUTERS WITH FLEXIBLE ARCHITECTURE

Kiev tJPRAVLYAYUSHCHIYE SISTEMY I MASHINY In Russian No 5, Sep-Oet 84
(signed to press 23 Dec 83) pp 26-31

iArticle by A. 1, Palagin, A. F. Kurgayev and A, G. Rokitskiy: "Systems
Planning and Application of Computers With Flexible Architecture""]

[Text] For -various computer applications, there are different dynamics of
formulating the tasks to be solved. Inmost cases the dynamics are dependent
on the intensity of the development of the automation systems, which is
connected with the development of the entity which is being automated, the
accumulation of knowledge about the entity, and automation experience.
Besides, when carrying out experiments in a scientific research laboratory,
working out prototypes of a new technique and new technologies, and in other
applications, the same computer is often used for the automation of not one,
but many entitles.

The dynamics of formulating tasks that are being solved demands a certain redun-
dancy of computer components, and, moreover, the introduction of functional
redundancy, i.e. the potential capability to alter and expand its functions,
is necessary right along with the redundancy of hardware and parameters
(memory, complex of external units, speed, reliability). For example, when
laying out automation systems, the requirement occurs to jointly use the stan-
dard devices of various families of computers. A requirement like this is
caused by the fact that the products list and characteristics of both hardware
and software aids (applied software in particular) for various families of com-
puters (including within the limits of a single class of computers) are sub-
stantially different and supplement each other to a certain extent. In con-
nection with this, the combined use of standard devices from various families
of computers improves the quality of the automation systems that are being
created or reconfigured, as well as accelerating the process of designing them.

Thus, giving a basic computer the feature of compatibility with the devices
of other computers is a highly urgent task,

Provision of the possibility for orienting its internal language (for example,
the command system) towards a class of tasks that Is being solved and towards

43

the language of the user Is a no less important direction for using the
functional redundancy of a basic computer.

Yet another example of the effective use of the functional redundancy of a
basic computer is the creation of complexes for modelling automation systems
of various entities in real-time. In this case the base computer is used for
real-time unit control and for real entities of the control and computing
complexes, for the creation of each of which may subsequently be used a
specially designed computer or a series computer which is most appropriate
for the corresponding entity,

A similar basic computer can also be used as a physical model (tool) 'for
processing basic solutions on the architecture and structure of computers
that are newly being developed, for debugging their basic software, as well
as a multipurpose computer that emulates the existing models of computers,

A new class of computer-r-a flexible architecture computer (EVM GA) that is
capable of implementing in real time through hardware and microprogramming
the architectures of different computers, as well as of being "tuned" to the
prescribed Internal languages and algorithmsr^ls required as a basic one for
all the indicated purposes,

/Computer Architecture./ Tin boldface] Definitions of the concept of "com-
puter architecture" that are available in literature are constructive to an
insufficient degree from the point of view of setting and solving design
tasks, What is in common, which to a greater or lesser degree has been
reflected in the definitions of computer architecture which were presented
in various publications U,2], comes down to this assertion: the architecture
of a computer is the ordered set of capabilities given to the user.

It's obvious that a computer's internal structure is. Inseparably connected
with the external manifestations of Its features, i.e. with the architecture.
Maximum support of this unity underlies the successful solution of tasks in
design and using computers.

The structure of a modern computer is effectively a composite of programmable
automatic devices with a certain hierarchy of control levels that unequivocally
correspond to the hierarchy of levels of the architecture: microprogramming,
programming (command system), algorithmic (high-level language), and level of
operating system and applied programs (systems).

Depending on the characteristics of the tasks that are being solved, the use
of an arbitrary aggregate of the computer's architecture levels can be re-
quired. In connection with this, it's necessary that each of the levels have
at its disposal two functionally universal means:

—presentations (by means of the language) and deliveries (by means of an ex-
ternal interface) of information from external sources, generally signals

44

(continuous and digital, measurable and adjustable), documents (ordered alpha-
numeric data), images (visual, acoustical and others) and algorithms, and

--interrelationships (by means of translation and internal interface) with

higher levels of the architecture.

However, this doesn't mean that all levels of structure in modern computers are
reflected in the architecture, i. e. they are accessible to the user. For
example, often the microprogramming level of control performs only the func-
tions of interpreting the upper (programming) level of the operators, while not
having a communications interface with the user.

On the basis of the arguments that are cited above, we'll represent the archi-

tecture of a computer with the set

T«[<iA}f"*,:l, ... ,n

where ak is the complete image of the k level of architecture, which is inter-
preted in the following manner

V ok -- {lk, Jk. t-k)
k

where Ik is the description of information that is accessible to the k level,

Jk is the interface of k level that is represented by a description of its

characteristics, and Lk £s the language of the k level that is represented by a
description of the syntax, semantics and characteristics of its implementation.

In turn, the components (lk T
' °k, Lk) of the k level of architecture are repre-

sented by the following sets of its characteristics:

v= 'V»>' • ... M,

•',.• <J > m ■.-.-. 1, . ■ • • Mj

Lk = {*•*.»> , m - 1, ML

where Ik m, Jk m and Lk m are descriptions of the following corresponding
characteristics:

M,= Card /fc; Mj .- C.ircl./,,; ML --Card Lk.

A list of the basic characteristics of information, interface and language of
the programming level of architecture is cited below as an example.

/Characteristics of Information/ tin italics]

1. Information units that are accessible at the programming level (of fixed
word length—bit, byte, 16-bit, 24, 32 and others; random word length).

45

2. Over-all number of data formats.

3. Variable numbers:

—kinds of numbers (whole, rational, complex and others),

—variation range according to kinds of numbers,

—position of the dividing point in a number (before the leftmost digit after
the rightmost digit; floating point), 8 ' r

basis of the number system,

-accuracy of representation (random, limited; word length of number, order and
mantissa), and

—representation of positive and negative numbers (in direct code, additional
and reverse).

4. Symbols:

—set of alphabets, and

—coding of symbols.

5. Memory:

—kinds of memory (permanent, semipermanent, long-term, main, register
logic-m—stacked, and associative), and '

-characteristics of each kind of memory (physical word length, addressable
units of information, variation limits of memory volume, access time, storage
reliability, methods for controlling and recovering information, and others).

/Characteristics of the Command System/ [in italics]

1. General characteristics:

-application scales (names of computers that use a given command system; date

?Lt"*VL l ?7 taCh ^^ °f COmPuter> numbGr of each type of computers that are located at the users; annual volume of output),

—basic areas of computer application with a given command system,

—number of commands,

-capacity of the command system-relative characteristics that evaluate the
functional resources of a given command system with respect to a standard
command system (it is determined by the ratio of the interpreter's volume of a
given command system, which is written in a standard command system, to the

46

interpreter's volume of a standard command system, which is written in a given
command system), and

—expandability of the command system (number of free codes, coding of commands
for accessing the expander, characteristics of the expander's command system).

2. Coding of commands:

—word length of commands,

—number of command formats, and

—command formats: word length of fields in the command word, connection of
each of the fields with the others, semantic content of the fields and codes.

3. System of operations:

—over-all number of operations,

—arithmetic operations,

—logic operations,

—control (of sequence of command exeuction, of data),

—forwarding and exchange,

—stacking operations,

—with bits,

—input-output,

—generation of effective address, and

—console and systems operations.

4. Addressing:

—number of addresses of commands (zero-, one-, two-address and others),

—number of operands that are addressable in one command,

—maximum addressable memory capacity,

—word length of the effective address,

—number of levels of indirect addressing,

—coding of indirect addressing flag, and

47

--program-accessible registers: over-all number; number of common registers,
index ones, segment registers, A-registers, stacking ones and others; con-
formity of addresses to functional groups of registers.

5. Interrupt system:

—type (priority, nonpriority, single-level, multilevel),

—number of levels,

—method for establishing priority (programming, microprogramming, hardware),

—sources of interrupts (programs, console, timer, input-output unit, control
circuits, and others),

—structure of interrupt register (word length, number of interrupt causes),
and

—structure of word of program status (over-all word length, number of fields,
their word length and semantic content).

6. Characteristics for implementing a command system in a specific computer:

--speed: time vector t = (tj, ..., tj, ..., t) of execution of commands,
average time for solving a standard task, and

—reliability: vector of rates of failure in execution of commands (X- is
characteristics); vector of probabilities for proper execution of commands for
a standard mixture of commands p = (Pl, ..., Pi, ..., pn), where p£ = exP(- had,) ,
«,- is the relative frequency of using the i command, and n is the number of
commands; probability for proper execution of a standard mixture of commands

P-ll/j, ; and probability for proper solution of a standard task.

/Characteristics of a Computer Interface/ [in italics]

1. Indicators of quality:

—level of standardization (national, international),

— connectedness (It is absent, the source to receiver, the source to n
receivers),

type of communications (radial communications, main, chained),

—load capacity of data buses,

—data transmission speed,

—reaction time to interrupt,

—number of lines (including control, data),

48

—control of reliability of information that is being transmitted, and

—priority structure (fixed, absolutely or relatively changing).

2. Functional and structural organization:

—structure of data buses (number of lines according to types of unibuses
(data, address, control).

/Flexibility of Computer Architecture./ [in boldface] We'll evaluate the
flexibility of architecture of a computer that is complete in design with a set
of architectures that are being implemented (accessible) in it without altering
the structure. In this regard, we'll represent the computer's architecture
with the matrix

T.4 = |KI|. o-'\,..., A (1)

where A is the number of architectures that are being implemented on the basis
of a given computer; 0ak is the complete image of the k level of type a
architecture.

We'll represent the description of the levels in the following form:

vo2 = (/j. 4, L°)
k.a

where I3],» j\ and La> are symbols that correspond to the descriptions of
components in connection with type a architecture. A complete description of
each of the components can be represented in the form of a matrix. Thus, for
example, in connection with the k^th component

'£=1101. m=' M,.-

While examining the various computers in accordance with the definitions cited
above, it's possible to come to the conclusion that a certain flexibility is
inherent in their architectures. To a greater degree, this is manifested at
the higher levels of control (systems, algorithmic, operating system) by
placing configuration aids, applied program packs, algorithmic languages, opera-
ting systems, and others at the disposal of the user. To a lesser degree, it's
manifested at the levels of the command and microcommand system of modern
computers.

In connection with the class of flexible architecture computers, it's
advisable to characterize an architecture's flexibility with the set

S ■-. {Va)

the elements of which are described in accordance with (1).

A list of types of (computer) architectures or their over-all number that are
being implemented can provide a brief description of an architecture's
flexibility.

49

A vector of the following form can serve as well as a brief quantitative
description of flexibility

0: 'Si . Rj . gL }

where gj-, gj and gL are the number of components of the proper type (kinds of
information, interfaces, languages) with possible itemization according to the
levels of k, as for example

k *

/Programming Compatibility./ [in boldface] As was noted, computer architec-
ture is a hierarchical system of control levels, the functioning of each of
which is provided by the levels that are located below. In this respect, a
special role is allotted to the command system level that, as a rule, is the
lowest out of those that are being made available to a user of modern compu-
ters.

Thus, compatibility at the command system level or programming compatibility,
which is understood as providing the possibility of executing one and the same
program in different computers, is one of the most important problems of compa-
tibility. In this regard, three kinds of compatibility are singled out: com-
patibility between computers of different manufacturers, compatibility between
computers of different generations of the same manufacturer, and compatibility
between models (from lower to higher) within the same generation of computers
of the same manufacturer.

By the present time, six basic methods of providing for programming compati-
bility have been defined: manual reprogramming, translation, simulation of one
computer on another, metalayout, decompiling and emulation [3]. Out of the
enumerated methods of providing for programming compatibility, emulation is the
most universal and effective one that uses a combination of hardware and soft-
ware simulation aids.

/Emulation./ [in boldface] Emulation, like the other methods too of providing
for programming compatibility of flexible architecture computers with different
computers,.solves three basic tasks: providing for informational compatibi-
lity, interface compatibility, and operator (command) compatibility.

Solution of the first task consists of coordinating the formats of data and
commands in the areas of storageand the transmission and conversion of informa-
tion. The following are the most important fragments for solving this task:
synthesis of the memory structure and determination of the structure of the
information, address and control unibus system. Solution of the given task is
substantially simplified with the emulation of informationally compatible com-
puters (for example, SM-1 and SM-3 or SM-2 and SM-4). "[sic]

Solution of the second task consists of effectively implementing an input-
output interface of a flexible architecture computer that provides for the
operation of a basic complete set of peripheral units under emulation condi-
tions or the possibility of arranging a flexible architecture computer

50

with a complete set of external units that are specifically for each of the
types of computers that are being emulated.

Solution of the third task consists of developing hardware and microprogramming
means that proyidefor the effective implementation of the command language of
each of the computers that is being emulated. The following are the most
important fragments for solving this task:

selection of a sufficient microoperating base and synthesis of microcommand
formats,

development of multipurpose means for analysing codes (for example, coded
combinations of different word length with random arrangement in the command
word),

—development of a developed system for generating the effective address of
operands,

—development of a multipurpose system for addressing microcommands,

selection of the number and word length of microprogram and program access-
ible registers,

—development of the structure for a register of process status andmeans for
analysing its contents,

—development of functional expansion means for a microprogramming control
system, and

—development of means for the interaction of architectures, for example, of
programming transition from one command system to another.

The quality of solving the indicated tasks determines the effectiveness of a
flexible architecture computer under the conditions of emulation. The effec-
tiveness of a flexible architecture computer can be substantially improved by
virtue of using a progressive industrial component base and implementing abso-
lute principles for over-all organization of the computer process (pipeline [in
English italics], pipeline and parallel data processing, controlled synchroni-
zation).

When formulating the command system of new computers in flexible architecture
computers, one isn't always successful in full measure in using
emulation, Supplying the user in the complex with the flexible archi-
tecture computer of a system for automating microprogramming and arranging the
computer and control systems on the base of a flexible architecture computer
must facilitate this process.

The NCR firm's NCR/32 SBIS [very high-speed integrated circuit], the production
of which began in 1983, can serve as an example of technical solutions that are
being used when implementing flexible architecture computers. The NCR/32
complete set envisages the possibility of operating with external microprograms

51

<,

 (IL

 (3)X

K WL
ncfi ll,M

(13)
Or Biicui-

iiofi IIM

JllK.'Oi

(4)1
NUIUHUlllL' 11 M.U'llCip.l.lb

; i' K

(5) • (6) . (7)■• (8),
l[K C M O c MA. y M

^ :
(10)

III.AM
1 ' [11 1

* A M

(12) ,
II M

(15)

(14) ■ o H y

P M

1

>!

Figure 1. Structural Diagram of a Flexible Architecture Computer

Key:
1. Systems information unibus 9. To external programming memory (PM)

2. Information base (IB) 10. Microcommand address data bus (ShAM)

3. Local information unibus 11. Microcommand address generator (FAM)

4. Command register (RK)

5. Command decoder (DK)

6. Queueing sytem (SMO)

7. Mass addressing sytem
(SMA)

8. Masking junction (UM)

12. Microprogramming memory (PM)

13. From external programming memory

14. Microcommand register (RM)

15. Operating unit (OpU)

52

that are stored in the memory with a capacity up to 128K bytes. On the basis
of such a microprogramming system, the NCR/32r-000 microprocessor that is included
in the complete set makes it possible to effectively emulate the machine lan-
guage of practically any computer.

The Varian Data Machines firm's models of emulating computers [5], which are
distinguished by multipurpose means fordecoding command codes of different
formats, a flexible input-output system, and aids for functionally expanding
the microprogramming control system, can serve as other examples.

The structural diagram of a flexible architecture computer, which illustrates
the basic mechanisms for "tuning" the architecture, is described in [6]
(figure). Here RK is the command register, DK is the command decoder, UM is
the masking junction, FAM is the microcommand address generator, PM is the
microprogramming memory, RM is the microcommand register, ShAM is the micro-
command address data bus and OpU is the operating unit.

Microprogram controlled selectors—SMO [queueing system] and SMA [mass address-
ing system] multiplexers—are used for allocating the operation code fields and
the number of the general purpose register. Programmable logic arrays, memory
with linear selection or an associative memory unit can be used as a command
decoder. When the emulation of several command systems is necessary, the
command register expands to a certain number of bits for storing the code of
the command system's number that is being emulated at the current moment of
time. Replacement of the code of the command system's number leads to switch-
ing of the command decoder's operating conditions.

/Evaluation of the Effectiveness of a Flexible Architecture Computer./ [in
boldface] First of all, we'll note that a flexible architecture computer can
be characterized by the flexibility indicators that were examined above.

The integral absolute indicators, which characterize the physical volume, the
consummable capacity and cost of a flexible architecture computer, and the
performance and reliability of executing programs in it that are written in the
languages of the command systems of the computers that are being emulated, are
important as well.

Right along with this, the relative indicators, which characterize the effec-
tiveness of decisions that are made when implementing the structure of flexible
architecture computers, can represent considerable interest. For example,
we'll examine the relative indicator of a flexible architecture computer's
performance in comparison with a certain k of the computer that is being
emulated.

The solution for k of a computer of certain class H tasks with an average
relative frequency vector a—{a,-,i~ 1, •■•> N*} for using this computer's commands
can be characterized as time vector t~\lik, i~l,, N k) for execution of the
commands. Then the average time for solving class H tasks is

Nk
Tk -= y, atttk.

53

In turn, the execution time of each of the commands for any microprogramming
computer can be determined by the sum

where Mk is the capacity of the microcommand set of k computer; ß,-/* is the
absolute frequency of using j microcommand when executing i command of k
computer.

However, the execution time of different microcommands is equal to or divisible
by a certain constant tk that is called a microcommand cycle and selected
proceeding from the time characteristics of the components that are being so
that tjk = ajk x tk (ajfc = 1, 2, ...).

Then formula (2) can be represented in the form

M /-i

and for Tk we'll finally obtain
N_k Mk

Tk = tk'2, a/ ^] ßf/A • ajk.

When solving this class of H tasks by placing programs of k computer in a
flexible architecture computer, we'll obtain a similar formula:

T* = 'o 2J at 2 P//o • aio,
I- I /=!

where /0, M0, ß,7o, aj0 are the flexible architecture computer's parameters
that are similar to the corresponding parameters of k computer.

The ratio Tk/Tp is an effectiveness indicator that characterizes acceleration
(retardation) in executing the programs of k computer in a flexible architec-
ture computer when solving class H tasks. Its sensitivity to the time charac-
teristics of components that are being used (tfc and tQ respectively) is a
particular shortcoming of this indicator. The indicator is free from this
shortcoming

Tk to V V V V
Vtk = -y • — -■■■ Z-ta' Li ß'/*"/ft / 2- a< ZJ ß'/o"/o.

which evaluates the effectiveness of structural solutions that are implemented
in a flexible architecture computer in comparison with one of the computers
that is being emulated. A similar indicator can be determined in the set of

54

computers that are being emulated:

K

K Yep/ ; ~ V V/A.

where K is the number of computers that are being emulated.

/Conclusion./ [in boldface] The modern stage of developing computer techno-
logy by right can be called a microprocessor one. The mass assimilation of
microprocessing technology means into the most diverse areas of the national
economy advanced to the foreground a whole series of problems, the most impor-
tant of which are the standardization and unification of both the hardware and
software of microprocessors, microcomputers and microprocessor systems.

The improvement of the industrial component base of computer technology, the
development of microprogramming control principles, and the over-all evolution
of computer architecture and structure predetermined the appearance of a new
class of computers—flexible architecture computers. Right along with the
other possible spheres of application, flexible architecture computers in a
large measure are capable of assisting in the solution of the urgent problems
that are named above. In particular, a way of creating standardized means of
microprocessor technology, while maintaining and effectively using the expen-
sive stores of software of various models and types of small computers that
have already been accumulated, and with the possibility of arranging it on the
basis of a basic flexible architecture computer, seems to be advisable and
economically advantageous.

In fact, the given article is a brief introduction to the bases of systems
programming and the application of flexible architecture computers. The defi-
nite practical experience, which was obtained in the given area at the
Ukrainian SSR Academy of Sciences Cybernetics Institute imeni V. M. Glushkov,
attests to the promising future of the given class of computers (particularly
in the "micro" division) and at the same time to the existence of a set of
highly complex, but interesting theoretical and applied tasks of general com-
puter theory that for the time being await its solution.

BIBLIOGRAPHY

1. Tanenbaum, E., "Multilevel Organization of Computers," Moscow, MIR, 1979,
547 pages.

2. Kartsev, M. A., "Architecture of Digital Computers," Moscow, NAUKA, 1978,
296 pages.

3. Malinovskiy, B. N. and Pogorelyy, S. D., "Emulation Methods of Computers,"
UPRAVLYAYUSHCHIYE SISTEMY I MASHINY, No 4, 1974, pp 43-45.

4. "Set of 32-Bit Instruments With a Large Programming Memory," ELEKTRONIKA,
No 18, 1982, pp 3-5.

55

5. Agrawala, A. K., "Foundation of Microprogramming. Architecture Software
and Applications," New York, Academic Press, 1977, 420 pages.

6. Palagin, A. V. and Rokitskiy, A. G., "Flexible Architecture Micro-
computers," MEKHANIZATSIYA I AVTOMATIZATSIYA UPRAVLENIYA, No 3, 1983,
pp 10-14.

COPYRIGHT: IZDATEL'STVO "NAUKOVA DUMKA" "UPRAVLYAYUSHCHIYE SISTEMY I MASHINY"
1984

9889
CSO: 1863/69

56

JPRS-UCC-85-00?
4 March 1985

UDC 681,3.65

PROBLEMS IN ORGANIZATION OF DYNAMIC MICROPROGRAMMING

Kiev UPRAVLYAYUSHCHIYR SISTEMY I MASHINY In Russian No 5, Sep^Oct 84
(manuscript received 9 Jan 84) pp 52-57

VASENDO, V, G.

[Abstract] Problems in organization of dynamic microprogramming are
analogous to those in the case of programming. The basal problems in the case
of dynamic microprogramming are storage of large microprogram arrays and
assurance of minimum access time. This requires an appropriate storage
layout, typical examples being the fast-access M-storage in B1700 hierarchical
structures and the read-write control storage disks in 1600/30 Microdata
computers, A second problem here is the algorithm of loading microprograms
into the storage, which can be done without or with program control, The
latter method is preferable, although slower, because the loading operation
becomes Independent of the control processes and can proceed simultaneously
with other operations as well as during computer operation, also because
it is simple and requires no special instruction codes in addition to standard
ones, A third problem here is transfer of control to special microprograms,
for which there are three methods available and any two of them can be com-
bined, Transfer can be effected by arbitrary interpretation, by fetch in-
structions, and by means of inactive or only sporadically otherwise used in-
struction codes, CAL DATA 135 being an example of combining the first two
methods, The system problems of dynamic microprogramming relate essentially
to multimicroprogramming with optimum allocation of resources, using the con-
cept of "virtual microprogram storage" so as to ensure interchangeability and
synchronization of microprograms as well as protection of basic microprograms
against interference from special ones and protection of special ones in one
array from those in another. A second system problem is integration of soft-
ware with the operating system, especially for expansion of user categories.
This is done on the conceptual level so as to retain the basic system charac-
teristics while realizing all functional capabilities without loss of error
immunity, and on the structural level so as to Include all microprogram
components in the structure of control programs and ensure proper interaction
and matching of modules. A third system problem is accessibility from the
user's standpoint, most expediently ensured by automation of terminal
facilities but also requiring laborious coding of microprograms with necessary
verification, simulation tests, and hardware debugging. A separate problem

57

is mobility of microprograms, inconsistent with mobility of programs within
a computer family. Possible solutions to this problem can be construction
of computer-independent microprogramming languages and translators,
standardization of microinstructions, or duplication of mlcroprogrammatically
realized portions of programs with automatic adjusting of programs for
either programmatic or microprogrammatic execution. References 16:
4 Russian, 12 Western (1 in Russian translation).
[68-2415]

58

JPKS^UCC-85-002
4 March 1985

SOFTWARE

STREAMLINING THE RUSSIAN SOFTWARE INDUSTRY

Moscow IZVESTIYA in Russian 17 Oct 84 p 2

[Article by V. Kipayev, professor, distinguished scientist of the RSFSR:
"Programming Industry"]

■[Text] High program quality is an important prerequisite for the effective
introduction of computers in the economy,

Without a program the computer is nothing but an "empty brain", an expensive
but useless apparatus. Thus a new problem has arisen; the organization of
the mass industrial production of computer programs on the basis of modern
technology.

The economic potential of nations in today's conditions is largely determined
by the level of production technology of various industrial products.
Technology determines to a significant degree the labor productivity, pro-
duction quality and prospective production growth. Control and data pro-
cessing programs have become industrial engineering products. And they
need the high efficiency technology which permits large, high-quality pro-
grams to be produced under strict time constraints with minimal labor input.

The transition from manual production of products to their industrial
production is quite characteristic of the process of development of various
areas of human activity, Here, a large collective of specialists of various
qualifications replaces the individual craftsman. Each specialist is re-
sponsible for his own stage of the total process of the final product's
manufacture.

What has been said is largely applicable to the creation of computer pro-
grams as well, The industrial technology for their design began to develop
relatively recently, and still has not been completely formulated as an
Independent field of Industry and applied science. Recently, however, the
Interest of specialists in various branches of the economy in program design
methods has Increased sharply, since time expenditures entailed in the
creation of many systems utilizing computers have come to be dictated by
the time required for the preparation of their programs.

59

The manual methods which still exist in certain organizations, by means of
which control programs are written (for electric power stations, robots,
manufacturing processes, flexible automated production facilities), make it
necessary to spend 5-7 years to write a 100-200 thousand line program.
Meanshile, the control system hardware is designed and Installed in a period
of 3-4 years, It need hardly be pointed out what the result of this dis-
crepancy in the development period of the "electronic brains" themselves and
their mathematical contents will be. It is precisely here that one of the
primary causes for delays in the Implementation of various automated control
systems in the economy lies.

It should be kept in mind that the cost of the programs comprises more than
one half of all expenditures for the computer system in control systems for
Integrated objects and industrial processes, And this is fully justified:
the cost of writing a single instruction In complicated program sets comprise
20-50 rubles, and more than 100 rubles in certain instances, And there are
tens and hundreds of thousands of such instructions in the program set.

Programs are. not only expensive, They are very- complex and thus require care-:
ful checking and thorough testing. An error In ä control program for robots
or flexible automated production facility may be fraught with malfunctions
and damage to expensive equipment. An excellent example of the value of
program quality control was cited In the letter of Ye, Yakovlyev "The
Intention" (IZVESTIYA, No 141, 1983). There it was described how the in-
clusion of only a single Incorrect Instruction in the program stopped the
primary VAZ assembly line for several hours. Program errors are accompanied
in aviation and space flight with a risk to the health and safety of human
beings. These circumstances have Increased to a significant degree the
Importance of determining the quality of computer programs.

Expenditures in production technology comprise 15^30 per cent of total
production costs for a product in the machine building industry, The role
of production technology in electronics and computer fabrication is even
greater. However, production technology expenditures in the area of in-
dustrial program design are insignificant (2-3 per cent), This underlines
the low level of sophistication of their production technology,

The necessity of creating integrated technological systems' for the automa-
tion of all stages in the creation and operation of control computer
complexes has become serious. The introduction of robots at the "Moskvlch"
automobile factory may serve as an example, where they are supposed to number
five hundred and fifty by the start of the coming five year plan. Even if
simple control programs of 1-2 thousand line length are utilized in them,
then In this Instance the total length of the programs comprises millions of
lines. A strictly regulated industrial technology and Special subdivision
are needed for the development and alteration of these programs in accordance
with production requirements in an established time framework.

Hundreds of organizations and various departments are currently occupied with
the development of programs. However, this work is' not planned on a national

60

scale or coordinated as a whole. The national economic plan and the plans of
departments and enterprises do not so much as even mention this type of
product.

It is obvious, in addition, that departments and individuals must be
designated who are personally responsible for the national organization of
the industrial production of various classes of programs, Specialized
enterprises and head organizations coordinating their work are necessary for
the creation and introduction of program production methods.

Modern software engineering is similar to the computer assisted design of any
industrial product, A number of organizations in the nation have already
accumulated experience in the effective utilization of powerful universal
computers for solving the discussed tasks. The design, duplication, document
tation and development of programs have been nearly completely automated.

This enables control system hardware and software to be developed in parallel
and thus to significantly reduce the time required for their creation. How-
ever, these methods and the facilities required for the automation are as
yet not used on a mass scale in this nation. Another circumstance should
be considered. Many program sets utilize components with identical functions,
Hundreds of practically identical programs can be found today, on which
specialists of different departments independently worked, wasting an
enormous amount of labor. But surely it is well known that in all branches
of Industry the delivery of standard assemblies Is widespread, which yield
large savings. The repeated utilization of worked-out components of
programs in the creation of programs can yield a similar savings (it is
entirely possible to see them as standard parts). But, of course, standards
for the formulation and testing of program modules, and also for their
quality, must first be introduced to solve this task.

This standardization permits program development duplication to be liquidated,
and to accumulate a high quality program product, which can be repeatedly and
widely utilized in systems having different purposes, Independently of their
departmental affiliation. The implementation of modern methods and facilities
that automate them, and of standards in program production will increase labor
productivity appreciably, and will reduce significantly the time required for
the creation of complex programs and of entire systems. Of no less importance
here is the assurance of the high quality of the programs,

The creation of a programming industry entails many problems. The combined
efforts of the leaders and manufacturing engineers, programmers and
scientists are needed for their solution. The organizational problems in-
volved in the assimilation of this present "no man's land" of industrial
production are now especially acute. It is necessary to organize the train-
ing of specialists, and publish scientific and industrial literature. An
integrated program of research and the creation of fundamental collectives
is necessary for the sharp Increase in the production volumes and for improv-
ing the quality of programs, The manual production of programs must be rev
placed by modern industrial production. Without a modern industrial produc-
tion method for computer programs, the continued, effective introduction of
the computer into the economy Is not possible.

12678
CSO: 8144/0405

61

JERS-UOC-8V002
4 March .1.985

UDC 681.3.06

GRAFIT LANGUAGE FOR SIMULATING TWO-DIMENSIONAL GEOMETRIC ENTITIES AND
SKETCHES

Kiev UPRAVLYAYUSHCHIYE SISTEMY I MASHINY in Russian No 5, Sep-Oct 84
(signed to press 29 Jul 83) pp 79-80

[Article by V. G. Sirotin: "GRAFIT Language for Simulating Two-Dimensional
Geometric Entities and Sketches"]

[Text] /Introduction./ [in boldface] The GRAFIT language [1] is designed
for use in computer-aided systems that are oriented towards design and indus-
trial preparation in machine building.

Models of two-dimensional (2D) and so-called 2 1/2 dimensional (2 1/2D) geo-
metric entities and sketches are being built by means of the GRAFIT language
in a computer's memory. Entities that can be interpreted as two-dimensional —
for example, solids of revolution—are 2 1/2D entities,

The constructed models are subsequently sent to some kind of applied program
for making calculations and they are stored in the data base for subsequent
operation and modification.

The ^ GRAFIT language can be used both by systems and applied programmers
(during the development of SAPR [computer-aided design systems] and SATPP
[computer-aided industrial production engineering systems]) and directly by
designers andnonprogrammers (for describing sketches of components).

Information of the following types is stored in the models that are being built
by means of GRAFIT:

—geometric (coordinates and parameters of elements),

—hierarchical,

—attributive (weight, cost, and so forth), and

information on contacts of elements between themselves (methods for describ-
ing them).

62

Operation with the language is possible in two modes—interactive and batch.
The GRAFIT language is a command^type language that includes approximately
100 different commands, GRAFIT is part of the big system of computer
graphics, which includes as well the subsystem for operating with 3D entities,
the subsystem for providing dialog, and also a specialized SUBD [data base
management system]

/Operation With the GRAFIT Language in the Batch and Interactive Modes./ [in
boldface] The GRAFIT langauge was implemented like a batch of FORTRAN pro-
grams. With respect to the user, the batch comes in the form of a geometric
language—expanded FORTRAN. The expansion is made by virtue of introducing a
new type of variables—geometric ones—and statements for operating with them.
The statements for operating with the geometric variables are formally constructs
designs of the FORTRAN language. For example, T = TO (Wl, W2) is the point
of intersection of elements Wl and W2; CALL YHEB (W) is editing of element W.

The models, which are built both as batch and interactive versions of GRAFIT,
are compatible. This makes it possible with the model of one entity to operate
alternately in the interactive and batch modes.

The syntax of the statements of the interactive mode language is slightly
different from the syntax of the batch statements. Thus, through their own
analogs the statements that were cited above have:

TO WL, W2

YHEB W

The names of the newly determined entities-are generated automatically and
written on the display screen next to the graphics of the entities. There is a
"purge" mode for receiving the graphics and during which the names and auxil-
iary plots are eliminated.

/Example of a Description of a Sketch By Means of GRAFIT PPP [Applied Program
Batches]./ [in boldface] The description of a sketch of a gasket, which was
performed by means of a GRAFIT PPP subroutine, is cited below:

SUBROUTINE TEST

C SUBROUTINES PX AND PY DETERMINE
C THE HORIZONTAL AND VERTICAL STRAIGHT LINES. IN
C THE GIVEN CASE, THE STRAIGHT LINES PASS THROUGH
C THE CENTER—POINT (0, 0)

PI = PX (0).
P2 = PY (0).

C SUBROUTINE SXY DETERMINES THE SEGMENT THROUGH
C THE COORDINATES OF THE INITIAL AND TERMINAL
C POINTS

S3 = SXY (-100., -100., 100., -100.)

63

C A NEW ENTITY IS GENERATED THROUGH A TURN OF THE
C INITIAL ONE AROUND ITS CENTER BY MEANS OF
C SUBROUTINE YVC

54 = YVC (S3, 90.)
C SUBROUTINE YOTP SERVES FOR PLOTTING THE
C ENTITY BY MEANS OF A REFLECTION
C RELATIVE TO THE STRAIGHT LINE

55 = YOTP (S3, PI)
56 = YOTP (S4, P2)

C SUBROUTINE TKAH DETERMINES THE POINT
C ACCORDING TO ITS COORDINATES

T7 = TKAH (45., -35.)
T8 = YOTP (T7, PI)
T9 = YOTP (T7, P2)

C SUBROUTINE D3T DETERMINES THE ARC
C THAT PASSES THROUGH 3 POINTS

D10 = D3T (T8, T9, T7)
C SUBROUTINE SHK DETERMINES THE SEGMENT
C ACCORDING TO THE INITIAL AND TERMINAL POINT

Sll = SHK (T7, T8)
C SUBROUTINE RLS DETERMINES THE LINEAR DIMENSION
C AND RDK THE DIAMETRIC DIMENSION

RL12 = RLS (S3, 0., 15., 0, 0.)
RL13 = RLS (S4, 3., 15., 0, 0.)
RL14 = RLS (Sll, 1., 7., 0, 0.)
RD15 = RDK (D10, 45., 0, 0., 0.)

C SUBROUTINE BBP ESTABLISHES THE GRAPHIC OUTPUT
C MODE; IN THE GIVEN CASE IT IS THE
C PURGE MODE

CALL BBP(3)
C SUBROUTINE BB AGAIN OUTPUTS GRAPHICS OF THE
C SKETCH WITH REGARD TO THE OUTPUT MODE

CALL BB
C CANONIC REPRESENTATIONS OF THE ELEMENTS ARE
C OUTPUTTED BY MEANS OF SUBROUTINE PKM. IN
C THE GIVEN CASE IN THE RANGE OF NUMBERS 1-11.

CALL PKM(1, 11)
RETURN
END

A rough draft version of the sketch is depicted in figure 1 and their names are
written down beside the elements, and the clean version of the sketch is
presented in figure 2.

The so-called canonical parameters of geometric elements, which subsequently can
be used for some special calculations, often arouse interest. A list of these
parameters for the first 11 elements of the sketch are cited in the table. The
coordinates here of one of the points at the straight line are for straight
lines (X, Y) and F is the inclination of the straight line to OX in the
radians; coordinates of the initial point of a segment are for segments (X, Y)
and R is its length; coordinates of the center are for arcs (X, Y); F is the

64

Figure 1. Rough Draft Version of a Sketch

Figure 2. Clean Version of a Sketch

65

Table 1. List of Canonical Parameters for First 11 Elements of the Sketch

X Y F R FD

0.00 0.00 0.00
0.00 0.00 1.57

-100.00 -100.00 6.28 200.00
-100.00 -100.00 7.85 200.00
-100.00 100.00 -6.28 200.00
100.00 -100.00 -4.71 200.00
45.00 -35.00
45.00 35.00

-45.00 -35.00
0.00 -0.00 0.66 57.01

45.00 -35.00 1.57 70.00
4.96

initial angle; and FD is magnitude, of the arc. Calculations of the canonical
parameters, as well as of the simplest characteristics of the whole entity (for
example, the area) can be performed automatically by GRAFIT PPP,

/Operating Characteristics./ [in boldface] The volume of a GRAFIT batch
totals approximately 15,000 statements. The SMOG [graphic queueing system] [2]
system was used as the basic graphic system for obtaining a hard copy and the
SPO GD [graphic dialog software system] [3] as the basic interactive system.
The language is functioning at a number of the country's VTs [computer centers]
in configurations, when BESM-6, YeS [single series] and M4030 computers are
used as a large computer and ARM-R, ARM-M (on an SM-3, M400 base) and "Elek-
tronika 1001" with the "Delta" display unit as an input-output satellite compu-
ter.

One manages to accomplish input, editing and output of actual sketches more
rapidly by means of the GRAFIT language than by hand. The VTs SO AN SSSR
[USSR Academy of Sciences Siberian Branch Computer Center], NGU [Novosibirsk
State University] and a number of USSR organizations were involved in develop-
ing the language.

BIBLIOGRAPHY

1. Sirotin, V. G. , "GRAFIT—SPPP [System of Applied Program Batches] for
Automating Planning and Design Operations in Machine Building," in the
collection "Problems of Computer Graphics," Novosibirsk, VTs SO AN SSSR,
1982, pp 103-110.

2. "Software Support of Plotters. SMOG; Level 1," Novosibirsk, VTs SO
AN SSSR, 1976, 118 pages.

66

3. Debelov, V. A., Matsokin, A. M. and Chubarev, A. I., "SPO GD—Graphic
Dialog Software System," "Problems of Computer Graphics," Novosibirsk,
VTs SO AN SSSR, 1982, pp 64-71.

COPYRIGHT: IZDATEL'STVO "NAUKOVA DUMKA" "UPRAVLYAYUSHCHIYE SISTEMY I MASHINY"
1984

9889
CSO: 1863/69

67

4 March 1985

UDC 681.324

AUTOMATION OF DEVELOPMENT OF SOFTWARE FOR SWITCHING UNITS THAT ARE IMPLEMENTED
IN THE FORM OF MULTIPROCESSOR SYSTEMS ON A MICROCOMPUTER BASE

Kiev UPRAVLYAYUSHCHIYE SISTEMY I MASHINY in Russian No 5, Sep-Oct 84
(signed to press 14 Sep 83) pp 41-44, 125

[Article by G. R. Ovchinnikov, Yu. D. Yurakov and A. G. Dmitriyev: "Automation
of Development of Software for Switching Units That Are Implemented in the Form
of Multiprocessor Systems on a Microcomputer Base"]

[Text] At the present time microcomputers, which in a number of instances are
united with multiprocessor and multicomputer control systems for improving
reliability and performance as well as for expanding functional resources, are
widely used for building switching units in communications engineering. Prob-
lems of developing software (PO) occur during the creation of systems like
this. Series microcomputers have limited resident means for programming and
debugging. As a rule, programming languages, if they're also included in the
resident software, are low-level languages and they don't have appropriate
analogs in multipurpose computers.

The given circumstance makes impossible the independent debugging and checking
of the functioning accuracy of programs, which are written for microcomputers,
in multipurpose computers. The advisability of using large computers in the
industrial chain for obtaining microcomputer software leads to the development
of cross aids that at the present time are available in practically any
developed microcomputer system. However, as a rule, the existing cross systems
of series microcomputers are oriented towards a single processor configuration
and they provide for the debugging process at the level of the command system
of the corresponding microcomputer.

The switching units of data transmission systems (SPD) are usually executed in
the form of multiprocessor computer complexes (MVK). The software of switching
units of data transmission systems has a volume on the order of tens, and
sometimes also hundreds, of kilobytes and a comparatively complex structure.

An automated program debugging system (ASO), which allows the following, was
created for improving the debugging effectiveness of software that is being
developed:

68

—to improve the writing speed of programs,

—to provide for program verification under the conditions of simulating the
operation of hardware that is organized in the form of MVK with a common
main memory field,

—to verify the accuracy of operations of applied programs in a complex with an
operating system, and

—to provide for the collection of statistical data on the functioning of the
computer system.

We'll examine the basic principles of building an automated program debugging
system and the results of using it for planning the software of switching units
for data transmission systems.

/Structure of a Program Debugging System./ [in boldface] Unification of the
basic programming stages—translation, verification of functioning accuracy in
a real environment, and correction (if and when necessary)—into a single
closed industrial process with united data bases and united software and ha,rd<r
ware was a basic requirement that determined the structure of the program
debugging system.

At the present time, the demand is growing for similar systems and, therefore,
they are being developed by a large number of organizations. The industrial
complex for the production of programs with the use of R-technology can serve
as an example [1].

The structural components of the automated program debugging system that is
being examined (translator, subsystem for text correction and simulation model)
are united with common data bases. Control communications are accomplished
through a root segment that is common for all programs of the automated program
debugging system.

Verification of the operating accuracy of programs under static and dynamic
conditions is a definite task of the simulation model—the basic part of an
automated program debugging system. Verification like this is conducted most
effectively in the interpretation mode, since in this case errors in the
program that is being debugged do not lead to an accidental halt of the model
as a whole. In addition, the operator has the opportunity to actively inter-
vene in the simulation process.

When developing an interpreter, it's important to select the level of the input
language on which the verification depth of the algorithms that are being
simulated depends. Emulation, i. e. interpretation at the command system
level, is used in an automated program debugging system. The emulator makes it
possible to build a simulated model that in the most complete manner takes into
consideration the structure of the actual entity, to reduce the memory capacity
for storing programming modules that are being debugged, and to develop pro-
grams both in a high-level language (if there are appropriate translators) and
at the command system level.

69

During simulation it's possible to use active control of the algorithms that
are being simulated or to interpret them. It's more efficient to use active
control for obtaining statistical dependencies, since in this regard the
model's performance turns out to be substantially higher than when emulating the
same programs. Inasmuch as the model that is under development is multi-
functional, both control methods are stipulated in it.

(D||

r,- —
(2)

UD

J-— JD

I fpOUOf.COp y-
(3)

Mony.'u.

/lOKa.MMKlIi

Mv.lMJl 111

(4 l~
A/imrrop

(■OripsUKtMIHH

c Krtiin;i/iMn

uopo/iMMit

JjflHHblX

(5}
Aflanrep
COlipflJKOlflffl

C KAHmUlMH

MGpOflrtMH

flOHHMX

r~

161 T y H K U H O H "TPt 11
-_l

M o a y n H

Figure 1. Generalized Structure of MVK [Multiprocessor Computer Complex]

Key:
1. Memory modules

2. Processor

3. Local memory module

4. Adapter for interface with data
transmission channels

5. Adapter for interface with data
transmission channels.

6. Functional modules

The emulator of an MVK with a common main memory field forms the basis of the
simulation model. The generalized structure of an MVK is cited in figure 1.
The MVK consists of a set of functionally oriented modules, which are united

70

for joint operation with the common main memory field that is broken down into
a number of memory modules, and for each of which there is an independent
access channel. The functional model consists of a processor, a local memory
module, and a number of external devices; for example, adapters for interfacing
with the data transmission channels. The structure of the hardware
(number of processors, capacity of local and common memory) is prescribed by
the user and can be altered during the process of operation.

Generation of external effects in the model and execution of algorithms of
software that is being simulated can be accomplished in the active control
mode.

The possibility was stipulated for triggering programs both by time traces and
by events, and that is used for organizing communcations with the external
medium.

The structure of an automated program debugging system is cited in figure 2.

Control of the model can be accomplished either in an interactive mode by means
of a video terminal unit or in a programmed manner.

Programming is accomplished in the same control statements that are used when
operating in the interactive mode. A program can be generated beforehand or at
the time the model is operating in the interactive mode. Special statements
are stipulated for organizing cyclical and branching programs.

At the present time there are no specially developed programming languages
(YaP) for microcomputers that are considered at the algorithmic level of the
functioning feature of multisystems. However, programming languages that are
oriented towards writing programs for microcomputers have already been
created; for example, PLM, In a number of instances, existing program-
ming languages are being adapted for these purposes^ for example,
there is a version of microPASCAL language for programming parallel multi-
systems that are built on the base of microcomputers [2]. A similar example of
using a universal programming language of multisystems is cited in [3].

The following situations are taken into account when selecting the programming
language for an automated program debugging system. It's not advisable to use
an autocode as a programming language, since different microcomputers can be
used in different modifications of switching units. In addition, a transition
from one family of microcomputers to another can occur in the improvement
process. A programming language must provide the possibility for obtaining
optimum object programs. It's advisable to use programs, which are written
in a programming language, for building different level simulation models in
multipurpose computers.

Use of the original version of a language makes it possible to most fully
consider the building features of each specific control computer complex.
However, in this case, the use of multipurpose computers is hindered in the
debugging process. When developing the original translator, it's necessary to
implement all phases of compilation in full capacity.

71

ZL

SUOT^Bn^TS pazTpjBpUB^suou
jo 8uTSS90oa,j • i_

suisaSoad gSusqoxg BAT a OBJ 93111 ' <q\ -[apoui uox^BxnuiTg

3U9ui3as 300H '£"[. 39S B3Bp X
BU

OT89H

S3X93 Suiaoaaaoo JLOJ uis^sXsqns -2X ajun STSäXBUB XBDT^OB^UäS

uiBaSoad XOJIJUOO *xx aaanduioooaoTui
„SS B^tuoa^axa,,

jo j03Ba9ua8 apoQ [xa^duioo aa^ndraoo
joss9oojdT^-[nui])IAW jo aorjBxnuig 'QI

joaBxSUBaI
s90Ba3 9uiT3 Äq suiBaSojtd jo SUTJSSSTJX '6

uiarjsAs
S3U9A9 Äq sureaSoad jo SuxjgSSiaj, *g B JO sjas B}ep x^T^uanbgs

[UI93SÄS SuxSSnqaa mBaSoaj ps^Buiorjnv] OSV ire jo aannona^s

"9

'I

2 9an§T^

(III)

(oi i:

OHOWgO OJOimHJ.XWlaJ.IIH I'IWKUd.lCXl| i J (^X)

(6)

(8)

(O

jö~j tfono»do>f"| (£T)

VKU.3X0.L
mUlXOddoX

HW9.LOM3tfO| |

uwwBdaodu
HBTnomimedii^

XflVV doxm/Xwe

HH9W
-od« wexxew ou
wwodjodu xaAue£

(3D

(S)

9GHUBHB OJOX
-OOhHDXOXHHO XOUg

#GD OMHHOdXXOUG,
WfJjfJOdXHW

wtfox doxwdonej

<R „ 3 Ü O » B 9 11, lwa.L3H0

^9 J OI'IH1W9i1OflOWOI/DO| |

d o i 8 m ii o d L

:e)

©
>i<niquox9ao

a)

A subset of the PL/1 language, which is expanded by a number of subprograms for
providing multiprocessor and multiprocessing processing of jobs, is used as the
programming language in the automated program debugging system. In the first
place, a solution like this makes it possible to organize double use of one and
the same programming modules: both in the simulation models that are imple-
mented on the base of a YeS [single series] computer and for obtaining programs
in the codes of one microcomputer or another. Secondly, it makes it possible
to provide for independent debugging of the programming modules in the YeS
computer , while using the entire high-power debugging and diagnosing equipment
that is available in the software of the given series of computers. In the
third place, the use of a standard compiler of PL/1 for conducting syntactical
analysis and control makes it possible to substantially reduce the volume of
its own developments. Fourthly, it's necessary to consider a knowledge of the
given language by a sizable contingent of programmers, and that reduces the
required volume of instruction:

A basic shortcoming of a solution like this is the impossibility of taking into
consideration the building features of a control computer complex, which are
the switching units of data transmission systems, and it is partially elimi-
nated by the introduction of subprograms that provide for the contact of
applied programs with the operating system of multiprocessor computer com-
plexes.

Contact of the subsystems with the unified system and interaction with the
external medium are accomplished at the level of data sets, and for the opera-
tion with which the subsystem for correcting texts is included in the composi-
tion of the automated program debugging system. This subsystem provides for
preparation as well of 'the regional data set for operating the translator and
the simulation model.

/Simulation Model./ [in boldface] As was noted already, a simulation model
comprises the basis of the automated program debugging system. A number of
statements, which either are inputted directly in the interactive mode during
simulation or are prepared beforehand in any sequential set and then inputted
to the model in the program control mode, was stipulated for controlling the
model. :

The /basing statements/'■; [in italics] make it possible to determine the area of
operation of the statements, which are examined below, in the basic memory of
the MVK: either as the local memory of one of the modules or as one of the
modules with a common memory that is accessible to all functional modules.

The /statements for displaying and altering the system's status/ [in italics]
make it possible to display or alter the status of any module of the system.
Statements for displaying and altering the contents of the system's basic
memory are included in this group.

The /statements for operating with the data sets/ [in italics] make it
possible to input data to the basic memory of the system that is being simu-
lated from the sequential data sets, as well as to transfer the contents of the
basic memory to the sequential data sets. A flexible magnetic disk unit

73

(NGMD), with which actual complexes can be fully configured, is simulated in the
system that is being examined. Both sequential and library data sets can be
organized in the NGMD. There is a statement that implements direct access to
any data set in a flexible disk model. In a simulation model it's possible to
have a data copying set in which all information, while being displayed on a
video terminal, is recorded in the event of a job under the proper conditions.

The /statements for controlling the operation of the functional modules/ [in
italics] make it possible to stop or trigger any module of the MVK. There is a
statement that provides for the over-all start up of the system and the pre-
scribed number of instructions that must be performed in a given simulation
cycle. A proper and sufficient level for displaying the simulation process is
of great importance when debugging programs. In the system that is being
examined, emulation can be performed with a display or without it. The display
can be accomplished either at the command system level of the microcomputer or
at the programming language level. In the first case, the following parameters
appear on the screen for each instruction: instruction counter, instruction,
effective address of the operand, contents of the effective address, and the
results flag. A display of the instructions that are being executed in the
programming language are stipulated in the simulation model. In this regard,
the program text in the programming language appears on the screen, and a
cursor indicates the statement that is being executed at a given moment of
time. In addition, the contents of all registers of the module, in which the
given program and the execution results of the operation are performed, are
displayed. The program text for display is prepared by the translator of the
automated program debugging system in the regional data sets.

The /program debugging aids/ [in italics] were stipulated in a broad set. In
each functional module, it is permitted to assign instruction counter halts (up
to eight enter and read halts). In addition, in each program that is being
debugged it's possible to introduce special instructions by which the so-called
program halts are executed. At the moment of its occurrence and depending on
the type of instruction, the message concerning the halt either appears on the
screen of the video terminal, is stored in the data copying set, or the user's
program is triggered at this moment. For example, this program can collect
additional information concerning the halt or simulate one algorithm or another
of the MVK in the active control mode. If an output to the screen is provided
at the moment of the program halt, then the system can switch to the program
control mode and execute in this mode the program that was assigned earlier.

The /statements for operating with systems time/ [in italics] make it
possible to display and correct the system's operating time.

The /statements of the initial initiation/ [in italics] of the system, in the
operating process of which loading is provided for all modules of the nucleus
of the OS [operating system], editor, and methods of access to the data for the
editor, are included in the simulation model. Following operation of the
initial initiation statement, it's possible to accomplish further loading of
software according to the actual functioning protocols of a specific MVK.

74

/Language and Translator of the System./ tin boldface] In the programming
language that is being used, the use of all arithmetic and logic operations was
permitted with one limitation: multiplication and division were permitted only
for a whole number. Addition procedures and functions according to modulo two
and logical shifts to the left and to the right were included in the composi-
tion of logic operations.

The use of conditional statements, GOTO statements and noniterative DO groups
was permitted in the programming language. The insertability of the groups was

not limited.

Access to the subprograms is accomplished by means of a CALL statement. The
transmission of parameters is accomplished through data structures that are
common for the subprograms. Each subprogram, except the basic one, can have
additional input points.

Identifiers and variables with an index are used as markers in the programming
language. Language statements that are marked by the translator aren't per-
ceived and, when using programs that are written in the programming language

and in different simulation models, that makes it possible to input additional
functions, which will not be reflected in the objective modules that are
received in the microcomputer codes.

In the dispatching system of the MVK that is described in [4], a great deal of
attention is devoted to data structures that can be organized both in the local
memory of the microcomputer and in the common memory of the MVK. Therefore,
the structures are assumed as a basis for describing data in the programming
language. The based structures make it possible to operate with the virtual
memory of the MVK. It's permitted to use arrays in the structures, however,
the number of indexes in an array is limited and that is connected with writing
optimum programs in microcomputer codes.

The testing trials that were conducted showed that object modules, which
were obtained following translation, are 10-20 percent longer than similar
program modules that are written directly into the microcomputer codes.

/Practical Results./ [in boldface] The examined automated program debugging
system was used by the authors for debugging the subsystem of centralized
process dispatching, which is included in the operating system of switching
units of data transmission systems and is designed for organizing the computer
process in multiprocessor computer systems that operate under real time condi-
tions. Look-ahead operating conditions make it possible to implement real time
conditions without using synchrointerrupts.

The distribution of all kinds of resources is organized at the level of pro-
cesses that are operating units in the system. The interaction of applied
programs with the subsystem that is being debugged is accomplished by means of
systems statements: GET RESOURCE, RELEASE RESOURCE, OBTAIN CURSOR, OBTAIN
ACCESS TO SYSTEMS COMPONENT, RELEASE SYSTEMS COMPONENT, DELAY PROCESS, TRIGGER
PROCESS WITH DELAY IN TIME, TRIGGER SYNCHROJOB and others. In [3] one can

75

become acquainted in more detail with the organization of the subsystem of
centralized process dispatching.

The development of a subsystem of centralized process dispatching was conducted
in several stages. During the first stage, macroinstructions were developed on
the basis of which program modules of systems statements were assembled during
the second stage. Both the majority of macroinstructions and all systems
statements were written in the programming language and each of them was
debugged either independently with the use of regular means of the YeS operating
system or with the use of a simulation model that is included in the automated
program debugging system. Debugging of individual modules was done under
uniprocessing conditions. A test example was developed for each systems state-
ment .

Comprehensive debugging of all systems statements under dynamic conditions was
done following independent debugging.

A dual-processor computer system with a common main memory field, in which a
number of job queues, a processor queue, and a number of resource queues and
general-purpose tables were written, was created on the base of an automated
program debugging system. At the beginning of the operation, several informa-
tion process domains were generated for each job queue and that made it
possible to parallel the execution of a number of single-type jobs. Subse-
quently, the number of processors in the system was increased.

The use of independent debugging made it possible to reveal practically all of
the serious errors.

For optimizing the algorithms of the operating system and the collection of
statistical data about the operation of the data transmission systems's
switching devices as a whole, the model was started in an automatic mode,
for which generators and data receptors were worked out. Examining the re-
sults of statistical modeling is beyond the scope of this article.

The program volume of the subsystem of centralized process dispatching gener-
ally totalled about 8K bytes.

At the present time, all systems statements of the subsystem are included
directly in the software of the automated program debugging system and that
provides an abstract computer model. The automated program debugging system
with the subsystem of centralized process dispatching and the initial loading
programs is used for developing the applied software of the switching units of
data transmission systems, as well as for further development of subsystems
that are included in the operating system.

/Conclusion./ [in boldface] The proposed automated program debugging system
makes it possible to develop and debug software for multiprocessor systems,
which are built on the base of series microcomputers with the "Elektronika S5"
command system, in the interactive mode. The automated program debugging
system can be used as well for simulation modelling of algorithms for process-
ing information in the switching units of data transmission systems.

76

The automated program debugging system is executed in a YeS computer, supported
by the version 6.1 YeS operating system, and uses a YeS7029 display set for its
operation. The total volume of the load modules amounts to about 80K bytes.
The automated program debugging system is implemented with an overlay structure
for economizing the main memory of the computer.

The authors express gratitude to 0. V. Dyudyakov who took an active part in
developing programs of the subsystem of centralized process dispatching.

BIBLIOGRAPHY

1. Vel'bitskiy, I. V., Khodakovskiy, V. N. and Sholmov, L. I., "Industrial
Complex for the Production of Programs for YeS and BESM-6 Computers,"
Moscow, STATISTIKA, 1980, 262 pages.

2. Fulton, S. and Vuffen, R., "High Level Language for Developing Real-Time
Systems Programs," ELEKTRONIKA, Vol 53, No 26, 1980, pp 51-57.

3. Fuller, S. Kh., Usterkhut, Dzh. K., Raskin, L. and others, "Multimicro-
processor Systems. Review and Example of Practical Implementation,"
TIIER, Vol 66, No 2, 1978, pp 135-150.

4. Antoshevskiy, V. S., Ovchinnikov, G. R. and Yurakov, Yu. L., "Building
Software of the Switching Center of Batches. TEKHNIKA SREDSTV SVYAZI
[Communications Facilities Engineering], "Line Communications Engineering"
series, No 8(4), 1981, pp 31-37.

COPYRIGHT: IZDATEL'STVO "NAUKOVA DUMKA" "UPRAVLYAYUSHCHIYE SISTEMY I MASHINY"
1984

9889
CSO: 1863/69

U

JH<S-UOC-85- 002
4 March ;i98!>

UDC 681.326.3

REALIZATION OF FORTRAN IN INTELLIGENT TERMINAL

Kiev UPRAVLYAYUSHCHIYE SISTEMY I MASHINY in Russian No 5„ Sep-Oct 84
(manuscript received 13 Dec 83, after completion 31 Jan 84) pp 57^-61

OSTROUKHOV, D. A, and GULINSKIY, P, Ya.

lAbstract] Program debugging In higher-level languages by a microprogram
computer acting as collective intelligent terminal has been realized in
FORTRAN-77, with P-FORTRAN as intermediate language, so as to allow for
transfer of debugged programs to other computers such as an "El'brus" multi-
processor complex. This realization ensures filtration of programs for
adequate control of deviations from the standard input language and facilitates
operation with several formats of problem data introduced either before or
after translation, It also provides for hookup of Interactive debugging
software In the input language. The realization follows a two-level scheme
and is supported by hardware In the collective intelligent terminal, The
filtration problem has been solved by verification not of the program as a
whole but of Its agreement with the description In the input language
during each specific run. Verification Includes static and dynamic tests,
the filtration program being executed in FORTRAN-77 according to ANSI-X.3.91978
specifications. Figures 3j references 13: 5 Russian, 8 Western (2 in
Russian translation).
168-2415]

UDC 681.3.02:519.682.2

DECOMPOSITION OF REQUIREMENTS IN 'DESIT' LANGUAGE

Kiev UPRAVLYAYUSHCHIYE SISTEMY I MASHINY in Russian No 5, Sep-Oct 84
(manuscript received 26 May 82, after completion 6 May 83) pp 61^-66

BASIN, Yu. A.

lAbstract] A possible approach to construction of problem~orlented control-
ling monitors for system simulation and design is shown, this method being

78

implemented conceptually and structurally in the DESIT (DEkompozitsiya
SIstemnykh Trebovanly «= DEcomposltion of SYstem Requirements) language.
This language, developed specially for describing the functioning of systems
with Backus-Naur syntax, makes it possible to describe the interaction of
system components with -maximum diversity of interaction structures while
partitioning the designed system into its operation component and object
component. The language provides also for automatic verification of complete-
ness and consistency as well as for introduction of adequate code-generating
monitors. The design procedure involves decomposition Into processes in-
teracting within the system and specification of their interaction, which is
demonstrated here on two examples, followed by verification with the aid of
connection and attainability matrices containing a logic "1" each. The code
of a controling monitor consists of two programs, a PROCESS 1NITITIAT10N
first program and an INTERROGRATION ANSWERING second program, controlled by
a supervisor, Functional decomposition is effected in some virtual medium of
system evolution, this medium being describable with drivers in accordance
with abstract data types Incorporated in the PASCAL language, whereupon
actions are described with the aid of module identifiers. In the DESIT
language it is possible to simulate the control of unprogrammed systems as
well as the control of programmed ones, Figures 1; references« 6 Western
(3 in Russian translation),
I68-2415]

79

4 *r*i&«»

APPLICATIONS

UDC 681.51

COMPUTER-AIDED INSTRUCTION SYSTEM ON AN ARM/"NAIRI-4" COMPUTER BASE

Kiev UPRAVLYAYUSHCHIYE SISTEMY I MASHINY in Russian No 5 Sep-Oct 84
(signed to press 2 Mar 83) pp 111-114

[Article by A. 0. Vardanyan and B. V. Pyrinov: "Computer-Aided Instruction
System on an ARM/"Nairi-4" Computer Base"]

[Text] The A0S-ARM/"Nairi-4" computer-aided instruction system was developed
and assimilated in series production on an ARM/"Nairi-4" minicomputer base at
the "Elektron" (Yerevan) production association jointly with the Novosibirsk
Institute of Railroad Transportation Engineers (NIIZhT) and an affiliate of the
All-Union State Designs-Engineering Institute for the Mechanization of
Accounting and Computing Operations.

The A0S-ARM/"Nairi-4" is a multivideo terminal system that is program compat-
ible with similar complexes on an M400, SM-3 base under ARM [automated work
place] conditions, and it is designed for the automation of operations during
the design of radio-electronic equipment and machine building products. The
system is used under AOS [computer-aided system] conditions during the indepen-
dent study of various academic disciplines on instructional programs (OP) that
are drawn^up by users-.

In the article, a description is given of the system's hardware, software
and main ideas that are assumed as a basis for the language of
the authors of the instructional programs.

The following are included in the hardware that support the AOS condi-
tions:

—main circuit switch (KMK),

—two group control units (BGU),

—two display unit switches (KD), and

—32 RIN-609 ("Videoton-340" display unit analog) video terminals.

80

A processor with a 64K main memory, a timer unit, an operator's console with a
"Konsul-260" typewriter, an FS-1501 tape transmitter, and a PL-150 paper-tape
punch are used under AOS conditions in addition to the indicated devices.

The structural diagram of the A0S-ARM/"Nairi-4" is cited in the figure.

The KMK, BGUl and BGU2 are placed in a rack of the ARM/"Nairi"4"
computer's processor; the KD1 and KD2 are located in separate

ShAUl and ShAU2 [lecture hall cabinet] racks. The ShAU racks can be placed in
different lecture halls. The maximum distance between the BGU and the ShAU
is 60 meters. The video terminals from the ShAU can be located at a distance
up to 16 meters. A structure like this makes it possible to conduct lessons
not at computer centers, but in special lecture halls.

The video terminals can operate under one of the following four conditions:

—processor input,

—processor output,

—input by direct access, and

—output by direct access.

The exchange of information between the video terminals and computers with
large bloch (up to 960 characters) occurs under direct access conditions.

Processor input is accomplished in the following manner.

Each BGU has its own time-pulse generator and 4-bit time-pulse counter. At the
time of polling i;ri1 , all 16 display units are in turn connected to the compu-
ter by means of the time counter. When the transmission of a character from
the keyboard to the computer occurs (when one of the keys is depressed), the
code of the character is entered in the output register of the display unit and
the keyboard is interlocked. During polling of a given display unit, the code
of the character that is being inputted from the output register through the KD
enters the BGU and is entered in the input data buffer register (RDBVV). If
the data entered the BGU during polling or prior to it, then the time counter
stops (its contents always correspond to the number of the display unit that is
being polled), and interrupt and servicing of the appropriate display unit are
accomplished. In other words, the processor reads the contents of the RDBVV
and enters them in the appropriate section of the computer's OZU [main memory].
Servicing time is /o6=l~3 microseconds and polling time is - /on == 1 -f-2
milliseconds, i. e. tm«.to6. [sic],

Following servicing of the display unit, the keyboard will be released according
to the algorithm, the time counter will begin to operate and the process will
continue.

There are a 4-bit display number register (RND) and an 8-bit output buffer data
register (RDBV) in each BGU for processor output.

81

Output begins with an entry in the RND following which the readiness of the
display unit is verified for receiving information. If it's ready, then the
processor enters the code of the information that is being outputted to the
RDBV, and further through the KD it enters all 16 display units, but is entered
in the main memory of the one of them the number of which is fixed in the RND.
Following this, the BGU receives a signal from the display unit concerning the
reception of information and it generates an interrupt signal. This means that
the processor can output the next byte of information (character).

When there is an output of large blochs, it's convenient to use direct access
conditions. The bloch that is being outputted is stored in the processor's
main memory. The readiness of the display unit to receive information is
verified just as under processor output conditions. The initial address of the
bloch that is being outputted is entered in the address register (RGA) that is
located in the BGU. The BGU organizes a byte-by-byte reading of data from the
processor's main memory and the entry of this information in the RDBV, and
further, just as under processor output conditions, the data enter the appro-
priate display unit from the RDBV. Following the output of each character, a
unit is added to the contents of the RGA. Having recognized the KT (end of
text) code, the BGU informs the processor of the termination of output.

It's convenient as well to execute the input of large blochs by direct access.
In the independent mode of the display unit, the information that is being
inputted is entered in its main memory with a display on the screen and edited,
following which the "data transmission" key is depressed. In this regard, the
display unit shifts from the INDEPENDENT mode to the TRANSMISSION mode and the
KT code is entered in its main memory. The characters enter the RDBVV during
polling of a given display unit (as under processor input conditions). From
the moment the first character enters the RDBVV, the time counter is stopped
until the termination of direct access conditions. With entry of the interrupt
signal, the processor enters in the RGA the initial address of the allocated
area of the main memory where it's necessary to place the bloch that is being
inputted.

During input by direct access, The BGU organizes data transmission from the
RDBVV to the processor's main memory. A unit is added following the entry of
each character in the RGA. Following entry of the KT code in the RDBVV and its
entry in the processor's main memory, the BGU informs the processor with an
interrupt signal of the termination of direct access, and the display unit
shifts in a diagram manner to a communications mode with the computer.

The communications length of 60 meters between the ShAU and the BGU is provided
by MSI (transmitter) and MS2 (receiver) microassemblies. It's possible to
increase the distance up to 500 meters, if the appropriate receivers and trans-
mitters are replaced with special T-interface receivers and transmitters.

Two programming complexes provide for functioning of the AOS:

—basic time-sharing software (BPORV) that was developed at the Yerevan affi-
liate of VGPTI [All-Union State Design-Engineering and Industrial Institute] for the
Mechanization of Accounting and Computing Operations, and

82

-04-
:■) u M

A»\M/Mhinpiw4*

(5)

, m N

40
- KMK

liry 1

i in /y j.

L_

(6)
BIV2

KM (9) !

niAv:

K;I2 (10)

AO IU5

— UD-
«ii A3 2

B M fl 4." O T O p M It 11 (1 JI b!

Figure 1. Structural Diagram of A0S-ARM/"Nairi-4"

Key:
1. ARM/"Nairi-4" computer

2. Main circuit

3. Hardware that
support AOS conditions

7. Lecture hall cabinet rack (ShAUl)

8. Lecture hall cabinet rack (ShAU2)

9. Display unit switch (KDl)

10. Display unit switch (KD2)

11. Video terminals
4. Main circuit switch (KMK)

5. Group control unit (BGU1)

6. Group control unit (BGU2)

—basic instructional program software (BPOOP) that was developed at NIIZhT.

The BPORV makes it possible to execute one or several instructional programs
simultaneously at all video terminals; an input-output control system, a timer
servicing program and a number of other subprograms are included in it.

83

The BPOOP is designed for translating and executing instructional programs, as
well as for controlling the progress of instruction on the part of the instruc-
tor and the students. The following are included in it:

—instructional program translator,

—program for processing the instructor's directives (ASSISTENT),

—program for processing the student's commands, and

—instructional program interpreter.

The first three programs interact directly with the users and their entire
operation is performed in accordance with directives that are submitted in a
natural language. The interpreter executes the instructional programs during
instruction.

The instructional programs are programmed in the POLINOM-80 language. The
instructional program translator and the ASSISTANT program are programmed in
this language as well.

The POLINOM-80 language is oriented towards the small computer. Many compu-
ter operations here are performed by default and, therefore, the
instructional programs in the computer implementation are brief. The language
itself and the instructional programs are suitable for various expansions and
the connection of modules that execute any operations within the limits of a
computer's technical resources.

Adaptive language features take into consideration the preparedness of the
student, the complexity of the instructional material, the nature of allowed
errors, and the operating rate.

The instructional programs are programmed according to a diagram with multiple
branching: an unlimited number of continuations can follow after each stu-
dent's response. There also can be linear programs that are being used as
monitoring ones.

The text of an instructional program is divided into pieces of information that
correspond to certain portions of the instructional material. A piece of
information has two parts:

—the text proper of a piece of information where the instructional material is
presented and one or several questions are generated, and

— standard responses with commentaries on them that are programmed beforehand.

Texts of the pieces of information and standard responses are entered in the
computer by separate blochs. The instructional program interpreter keeps both
blochs in sight simultaneously.

84

Both the text of a piece of information and the commentaries on standards are a
sequence of characters and instructions of the POLINOM-80 language. The
instructional program interpreter scans this sequence and all encountered
characters are outputted to a screen, while not requiring any instructions
whatever for this. If an instruction (that occupies one or two bytes) is
encountered, then control is transferred to the appropriate module for its
execution, and then the output of characters continues again. The absence of
print statements in an instructional program noticeably abbreviates it, since
this is the most frequently encountered statement.

The analysis instructions (presently there are eight of them) are the largest
in the number of executable operations. Each one of them:

—compares a response with the standard (standards) by one method or another,

—conducts registration of errors,

—prepares standard or previously prepared commentaries (of the CORRECT—
INCORRECT type) for presentation,

—provides for transition to presenting a commentary, and

—following a commentary, prepares the return to a continuation of the piece of
information or its partial repetition (requery).

It's sufficient to enter a two-byte instruction in an instructional program and
to provide each standard with a three-bit (binary) flag (value) for execu*-
ting all these operations.

Analysis of the response is conducted for precise agreement with the standard
or for being within the numerical range, as well as for agreement with the
standard when there is a deviation of 1-2 percent.

The standards themselves can be either written in the instructional program or
computed in the course of operation with regard to the student's individual
data. A module in PDP-11 language, which is connected to the instructional
program by a separate instruction, must be programmed for computing the stand-
ards (numerical or character). The maximum number of modules in one instruc-
tional program is 255. Thus, there are practically no limitations of any kind
on the method for computing the standards. The analysis methods can be
developed easily as well.

We'll cite a small example from which the structure of a piece of information
and the sequence of the computer's operations will be evident.

READ—P.2.1.//TP

WHAT—IS—THE—NAME—OF—
THE—BASIC—UNIT—OF—THE—
INSTRUCTIONAL—PROGRAM?
#ChF15#AE15#IDl2

o3 ePIECE OF INFORMATION
k CORRECT. #KS
k YOU—MADE—AN—ERROR,
RESPOND—AGAIN: #KS

85

The text of the piece of information is cited on the left here and on the right
is the standard, which is marked in the front with the letter "e" and has the
value three, as well as two commentaries in the event of a correct or
incorrect response (they are marked with the letters "k").

The instructions in the text are provided with the flag #, and in the computer
entry with a unit in the master bit of a byte.

Having begun the presentation of a piece of information, the computer will
depict on the screen the message READ P.2.1. WHAT IS THE NAME OF THE BASIC
UNIT OF THE INSTRUCTIONAL PROGRAM? and it will stop at the instruction #ChF15
(read the phrase in the 15th cell of the student's main storage region). The
place from which it's necessary to repeat the presentation of the piece of
information, if an incorrect response enters, will be fixed by the instruction
// TP (requery point).

The response is verified by the instruction // AE15 (analyse the response in the
15th cell according to the standards).

If there is a correct response, estimate 3 provides for output of the first
commentary CORRECT and presentation of the piece of information will continue,
but only instruction # ID12, in accordance with which transition to piece of
information 12 will occur, is there.

If there is an incorrect response, a second commentary will be output in
accordance with value three, following which a portion of the text of the
piece of information will be repeated: YOU MADE AN ERROR; RESPOND AGAIN: WHAT
IS THE NAME OF THE BASIC UNIT OF THE INSTRUCTIONAL PROGRAM?

Both commentaries here conclude with the instruction # KS (end of message), but
they also can end with a transition and then a return to the text of a given
piece of information doesn't occur.

An error that is allowed during a response and the very fact of presenting a
piece of information are fixed in the counters that are not visible to the
programmer; when there is some other value (not equal to three), loading
of the counters does not have to take place.

From the example it's evident that the instructions of an instructional program
occupy some space in a computer's memory, and the even greater consolidation of
a program is possible only at the expense of texts. The dictionary of repeat-
ing phrases serves this purpose. Words, combinations of words or their parts
and, finally, simply a program's linear segments that consist of characters and
instructions are entered in it. Access to the dictionary is accomplished by
the instruction #Vl:<^. (output phrase with the number a) that is entered in the
necessary space of the text of a piece of informationl or commentary. The
total number of phrases in a dictionary is up to 255. Experience shows that
they make it possible to reduce an instructional program by approximately one-
third.

86

The use of subroutines provides a substantial reduction as well. A subroutine
is a small, branched instructional program that consists of a number of pieces
of information to which access is possible from different locations of the
basic program. For example, the necessity for this occurs during an explana-
tion of the preceding material, a lack of knowledge of which can be revealed at
different stages of the student's operation. Subroutines are inevitable as
well in large instructional programs that control course planning.

The total impact from using all means for program reduction can be described by
the following numbers. One of the instructional programs that controls the
execution of a course plan at NIIZhT occupies a memory capacity of nearly 5.5K
and interacts with a student over the course of 6-8 hours. Another one, which
is more laconic, occupies 10K and works 25-30 hours with a student.

Its speed is a considerable factor for the possibility of creating an AOS on
the base of a small computer. Of course, the multiplicity factor of a program
accelerates the servicing time of a single subscriber. But this is still
insufficient to provide an acceptable reaction time to a student's response.
Processor input and output spoke a decisive word here. Analysis of the accu-
racy of a response can proceed following the input of each character. In many
instances, it's possible to recognize a correct response by one to two letters.
In the A0S-ARM/"Nairi-4" it's easy to organize the printing out of a response
like this and not to take time away from the student and the computer. An
incorrect response is rejected during the earlier input stage, the computer is
released from reading and analysing unnecessary information, and the analysis
itself is also considerably simplified. While recognizing and printing out
individual words, case endings and so forth, it's possible to receive and
analyse in increments the more complex responses that are impossible to iden-
tify by one to two letters. Accordingly, a response is generated jointly by
the student and the computer. Thus, ACCORDING TO THE ESTIMATE OF THE STANDARD
will be the correct response to the question ACCORDING TO WHICH COMPUTER INDI-
CATOR IS THE NECESSITY FOR ERROR REGISTRATION DETERMINED?. It's sufficient for
the student to set up the underlined letters and the computer will add the
remaining ones. It's clear that there is an element of prompting here, but not
so considerable. In return, the analysis program is reduced many times, the
entire operation is accelerated, the reaction time to a response is reduced,
and the memory's main storage region in which it's necessary to read the
student's response is considerably reduced.

Everything that was said doesn't mean that the POLINOM-80 language doesn't
allow other forms for analysing responses. This is easily feasible, but limi-
tations on the number of simultaneously operating terminals can occur.

The adaptive meansof the POLYNOMIAL-80 language are practically the same as
those in other instructional systems [1-3], but they differ in the brevity of
program implementation. A complexity indicator P is established according to
each piece of information. The simplest pieces of information have P = 0 and
the most complex ones have P = 7. Accordingly, all students have a prepared-
ness indicator p. The poorest ones have p = 0 and the strong ones have p = 7.
A piece of information is presented to a student only if p ^P, i. e. if it's
within his abilities. Otherwise, an equivalent piece of information, which is

87

stated in a more detailed and accessible manner, is presented. While using the
indicators p and P (again without additional instructions in the instructional
program), the instructional program interpreter selects a piece of information
that is within his abilities. This selection proceeds during any transitions
to a new piece of information. Thus, not every student will receive the 12th
piece of information in accordance with instruction # ID12 and a simpler piece
of information will be presented to some of them, but if it is too complex
also, then the computer searches for one that is within their abilities. Up to
seven such sequential transitions are stipulated in accordance with a string of
equivalent pieces of information, i. e. eight levels of complexity of the
instructional material are possible. In instructional programs on course
planning, it's suitable to use indicators P for partially and completely auto-
mating a calculation. For example, P = 0 •-=- 4 can signify the ordinary levels
of complexity, P = 5-f- 6 signifies partial and P = 7 signifies complete automa-
tion of a calculation.

Each piece of information has a time norm for studying it and, when there is
too much time, the interpreter presents an equivalent piece of information.

In our opinion, the problems of trouble-shooting the typical errors of a stu-
dent and his reaction to them have been solved successfully in the system.
Replication equipment exists for this. Replication has two texts. The first
text (replication A) is an ordinary reaction to an error. For example:

INCORRECT. // KS

The second text (replication B) contains a reaction already to a specific type
of error. For example:

RECALL—THE—METHOD—FOR—INTEGRATION—BY—PARTS. # ID78.

The replication is built in to the commentary at different places of a program
where a given error is "caught" by the instruction VRk (k is the replication
number). Replication A is output the prescribed number of times (two to three
times) and then replication B is dumped one time, and the presentation counter
of replication A is erased as well. All this makes it possible to react easily
(without the expense of the place in a program) to an error and then to provide
additional material for study, to reduce the preparedness indicator, and so
forth.

It's a sound practice to use two kinds of replication for reviving a dialog:
GOOD, and sometimes WELL DONE, are used with all successful responses; NO, NO,
and at times, PLEASE DON'T HURRY! are used with unsuccessful responses.

A prototype of the described AOS was implemented at NIIZhT in a "Nairi-K"
computer and it has already been used for 5 years in the instructional process
of a "Bridge Design" course [4]. Experience showed that instruction in the
design process is a very promising area of application for AOS. The plan
manages to be replete with new contents, to introduce elements of SAPR [compu-
ter-aided design systems], to improve the study of instructional material by
all students, to rid them of a number of routine computations, to dramatically

88

reduce (up to öne-third and one-half) the execution time of an operation, and
to heighten interest towards the subject that is being studied.

BIBLIOGRAPHY '

1. Dovgyallo, A. M. , "Dialog of a User and a Computer. Bases of Planning and
Implementation," Kiev, NAUKÖVA DUMKA, 1981, 232 pages.

2. "Computer-Aided Instruction Systems on a Computer Base," edited by A. F.
Chernyavskiy, Minsk, BGU [Belorussian State University imeni V. I. Lenin],
1980, 176 pages.

3. Kuznetsov, S. I., "'Sadko'—A System for Computer-Assisted Dialog and
Collective Instruction," VOPROSY KIBERNETIKI, "Human and Computer Instruc-
tional Systems" series, No 60, 1979, pp 150-160.

4. Pyrinov, B. V., "Systematic Instructions for Calculating Reinforced
Concrete Flexible Components of Bridges in the Form of a Dialog With a
"Nairi-K" Computer," Novosibirsk, NIIZhT, 1982, 28 pages.

COPYRIGHT: IZDATEL'STVO "NAUKOVA DUMKA" "UPRAVLYAYUSHCHIYE SISTEMY I MASHINY"
1984

9889
CSO: 1863/69 - END -

89

